军大大大
易买易得
决策树是用二叉树形图来表示处理逻辑的一种工具。可以直观、清晰地表达加工的逻辑要求。特别适合于判断因素比较少、逻辑组合关系不复杂的情况。 决策树提供了一种展示类似在什么条件下会得到什么值这类规则的方法。比如,在贷款申请中,要对申请的风险大小做出判断,图是为了解决这个问题而建立的一棵决策树,从中我们可以看到决策树的基本组成部分:决策节点、分支和叶子。 决策树中最上面的节点称为根节点,是整个决策树的开始。本例中根节点是“收入>¥40,000”,对此问题的不同回答产生了“是”和“否”两个分支。 决策树的每个节点子节点的个数与决策树在用的算法有关。如CART算法得到的决策树每个节点有两个分支,这种树称为二叉树。允许节点含有多于两个子节点的树称为多叉树。 每个分支要么是一个新的决策节点,要么是树的结尾,称为叶子。在沿着决策树从上到下遍历的过程中,在每个节点都会遇到一个问题,对每个节点上问题的不同回答导致不同的分支,最后会到达一个叶子节点。这个过程就是利用决策树进行分类的过程,利用几个变量(每个变量对应一个问题)来判断所属的类别(最后每个叶子会对应一个类别)。
kimiko范范
决策树学习是机器学习方法中的一种。这种方法将习得的训练集函数表示成树结构,通过它来近似离散值的目标函数。这种树结构是一种有向树,它以训练集的一个属性作节点,这个属性所对应的一个值作边。决策树一般都是自上而下的来生成的。每个决策或事件(即自然状态)都可能引出两个或多个事件,导致不同的结果,把这种决策分支画成图形很像一棵树的枝干,故称决策树。选择分割的方法有好几种,但是目的都是一致的:对目标类尝试进行最佳的分割。从根到叶子节点都有一条路径,这条路径就是一条“规则”。决策树可以是二叉的,也可以是多叉的。对每个节点的衡量:1) 通过该节点的记录数2) 如果是叶子节点的话,分类的路径3) 对叶子节点正确分类的比例。有些规则的效果可以比其他的一些规则要好。决策树对于常规统计方法的优缺点优点:1) 可以生成可以理解的规则。2) 计算量相对来说不是很大。3)可以处理连续和种类字段。4)决策树可以清晰的显示哪些字段比较重要缺点:1) 对连续性的字段比较难预测。2) 对有时间顺序的数据,需要很多预处理的工作。3) 当类别太多时,错误可能就会增加的比较快。4) 一般的算法分类的时候,只是根据一个字段来分类。
决策树分析的基本步骤:①绘制决策图;②计算发生率;③确定效用值;④计算总效用值;⑤确定方案;⑥敏感性试验。
题型一:方案评价方案评价一题是考试的时候应该得满分的题目,并且新版教材本章也并未发生大的变化,所以学员要好好把握。首先要学好价值工程、决策树、寿命周期成本分析等
造价工程师2018造价-案例-精讲75、(2018)第四章第六节:决策树方法在投标决策中的运用。决策树方法在投标决策中的运用;分析背景材料,按照事件逻辑关系绘制
回答 1)画出决策树,画决策树的过程也就是对未来可能发生的各种事件进行周密思考、预测的过程,把这些情况用树状图表示出来.先画决策点,再找方案分枝和方案点.最后
1、绘制决策树图。从左到右的顺序画决策树,此过程本身就是对决策问题的再分析过程。2、按从右到左的顺序计算各方案的期望值,并将结果写在相应方案节点上方。期望值的计