比福爷爷
第一个1是指网络层数(net.numLayers);
第二个1是指网络输入个数(net.numInputs);
从第j个输入到到第i层的权重的权重矩阵(或null matrix [])位于net.iw {i,j};
神经网络对象IW属性:该属性定义了网络输入和各输入层神经元之间的网络权值,属性值为NxNi维的单元数组,其中,N为网络的层数,Ni为网络的输入个数。
如果net.inputConnect(i,j)为1,即第i层上的各神经元接收网络的第j个输入,那么在单元net.iw {i,j}中将存储它们之间的网络权值矩阵。
该矩阵的行数为第i层神经元的个数(net.layers{i}.size),列数为第j个输入的维数(net.inputs{j}.size)与输入延退拍数(net inputWeights{i,j}.delays)的乘积。
扩展资料:
net.IW{i,j}的作用
通过访问net.IW{i,j},可以获得第i 个网络层来自第j 个输入向量的权值向量值。 所以一般情况下net,iw{1,1}就是输入层和隐含层之间的权值。
net.IW{i,j}各个属性的含义:
(1)、delays:该属性定义了网络输入的各延迟拍数,其属性值是由0或正整数构成的行矢量,各输入层实际接收的是由网络输入的各个延迟构成的混合输入。
(2)、initFcn:该属性定义了输入权值的初始化函数,其属性值为表示权值初始化函数名称的字符串。
(3)、learn:该属性定义了输入权值在训练过程中是否进行调整,其属性值为0或1。
(4)、learnFcn:该属性定义了输入权值的学习函数,其属性值为表示权值学习函数名称的字符串。
小月半月月
net.iw{1,1}=W0;net.b{1}=B0;net.iw{1,1}=W0;输入层和隐层间的权值,net.b{1}=B0输入层和隐层间的阈值.
BP(back propagation)神经网络是1986年由Rumelhart和McClelland为首的科学家提出的概念,是一种按照误差逆向传播算法训练的多层前馈神经网络,是目前应用最广泛的神经网络。
BP神经网络具有任意复杂的模式分类能力和优良的多维函数映射能力,解决了简单感知器不能解决的异或(Exclusive OR,XOR)和一些其他问题。从结构上讲,BP网络具有输入层、隐藏层和输出层;
从本质上讲,BP算法就是以网络误差平方为目标函数、采用梯度下降法来计算目标函数的最小值。
扩展资料:
BP神经网络无论在网络理论还是在性能方面已比较成熟。其突出优点就是具有很强的非线性映射能力和柔性的网络结构。网络的中间层数、各层的神经元个数可根据具体情况任意设定,并且随着结构的差异其性能也有所不同。但是BP神经网络也存在以下的一些主要缺陷。
①学习速度慢,即使是一个简单的问题,一般也需要几百次甚至上千次的学习才能收敛。
②容易陷入局部极小值。
③网络层数、神经元个数的选择没有相应的理论指导。
④网络推广能力有限。
对于上述问题,目前已经有了许多改进措施,研究最多的就是如何加速网络的收敛速度和尽量避免陷入局部极小值的问题。
参考资料来源:百度百科-BP神经网络
雪落0002
学习向量量化LVQ(Learning Vector Quantization)神经网络,属于前向神经网络类型,在模式识别和优化领域有着广泛的的应用。LVQ神经网络由三层组成,即输入层、隐含层和输出层,网络在输入层与隐含层间为完全连接,而在隐含层与输出层间为部分连接,每个输出层神经元与隐含层神经元的不同组相连接。隐含层和输出层神经元之间的连接权值固定为1。输入层和隐含层神经元间连接的权值建立参考矢量的分量(对每个隐含神经元指定一个参考矢量)。在网络训练过程中,这些权值被修改。隐含层神经元(又称为Kohnen神经元)和输出神经元都具有二进制输出值。当某个输入模式被送至网络时,参考矢量最接近输入模式的隐含神经元因获得激发而赢得竞争,因而允许它产生一个“1”,而其它隐含层神经元都被迫产生“0”。与包含获胜神经元的隐含层神经元组相连接的输出神经元也发出“1”,而其它输出神经元均发出“0”。产生“1”的输出神经元给出输入模式的类,由此可见,每个输出神经元被用于表示不同的类。
Pistachio陆
BP网络中w(1,1)表示第1个输入矢量在输入层和隐含层中的权值。w(1,2)表示第2个输入矢量在输入层和隐含层中的权值。...w(1,j)表示第j个输入矢量在输入层和隐含层中的权值。w(2,1):第1个输入矢量在隐含层和输出层中的权值。。。。若w(i,j)中i>2,则有多个隐含层。