金威家具
奇函数定义:对于一个函数在定义域范围内关于原点(0,0)对称、对任意的x都满足1、在奇函数f(x)中,f(x)和f(-x)的绝对值相等,符号相反即f(-x)=-f(x)的函数叫做奇函数,反之,满足f(-x)=-f(x)的函数y=f(x)一定是奇函数。例如:y=x^3;(y等于x的3次方)2、奇函数图象关于原点(0,0)对称。3、奇函数的定义域必须关于原点(0,0)对称,否则不能成为奇函数。
我爱我家2小宝
V、X、Z:Value of function :函数值Variable :变数Vector :向量Velocity :速度Vertical asymptote :垂直渐近线Volume :体积X-axis :x轴x-coordinate :x坐标x-intercept :x截距Zero vector :函数的零点Zeros of a polynomial :多项式的零点T:Tangent function :正切函数Tangent line :切线Tangent plane :切平面Tangent vector :切向量Total differential :全微分Trigonometric function :三角函数Trigonometric integrals :三角积分Trigonometric substitutions :三角代换法Tripe integrals :三重积分 S:Saddle point :鞍点Scalar :纯量Secant line :割线Second derivative :二阶导数Second Derivative Test :二阶导数试验法Second partial derivative :二阶偏导数Sector :扇形Sequence :数列Series :级数Set :集合Shell method :剥壳法Sine function :正弦函数Singularity :奇点Slant asymptote :斜渐近线Slope :斜率Slope-intercept equation of a line :直线的斜截式Smooth curve :平滑曲线Smooth surface :平滑曲面Solid of revolution :旋转体Space :空间Speed :速率Spherical coordinates :球面坐标Squeeze Theorem :夹挤定理Step function :阶梯函数Strictly decreasing :严格递减Strictly increasing :严格递增Sum :和Surface :曲面Surface integral :面积分Surface of revolution :旋转曲面Symmetry :对称 R:Radius of convergence :收敛半径Range of a function :函数的值域Rate of change :变化率Rational function :有理函数Rationalizing substitution :有理代换法Rational number :有理数Real number :实数Rectangular coordinates :直角坐标Rectangular coordinate system :直角坐标系Relative maximum and minimum :相对极大值与极小值Revenue function :收入函数Revolution , solid of :旋转体Revolution , surface of :旋转曲面Riemann Sum :黎曼和Riemannian geometry :黎曼几何Right-hand derivative :右导数Right-hand limit :右极限Root :根 P、Q:Parabola :抛物线Parabolic cylinder :抛物柱面Paraboloid :抛物面Parallelepiped :平行六面体Parallel lines :并行线Parameter :参数Partial derivative :偏导数Partial differential equation :偏微分方程Partial fractions :部分分式Partial integration :部分积分Partiton :分割Period :周期Periodic function :周期函数Perpendicular lines :垂直线Piecewise defined function :分段定义函数Plane :平面Point of inflection :反曲点Polar axis :极轴Polar coordinate :极坐标Polar equation :极方程式Pole :极点Polynomial :多项式Positive angle :正角Point-slope form :点斜式Power function :幂函数Product :积Quadrant :象限Quotient Law of limit :极限的商定律Quotient Rule :商定律 M、N、O:Maximum and minimum values :极大与极小值Mean Value Theorem :均值定理Multiple integrals :重积分Multiplier :乘子Natural exponential function :自然指数函数Natural logarithm function :自然对数函数Natural number :自然数Normal line :法线Normal vector :法向量Number :数Octant :卦限Odd function :奇函数One-sided limit :单边极限Open interval :开区间Optimization problems :最佳化问题Order :阶Ordinary differential equation :常微分方程Origin :原点Orthogonal :正交的 L:Laplace transform :Leplace 变换Law of Cosines :余弦定理Least upper bound :最小上界Left-hand derivative :左导数Left-hand limit :左极限Lemniscate :双钮线Length :长度Level curve :等高线L'Hospital's rule : 洛必达法则Limacon :蚶线Limit :极限Linear approximation:线性近似Linear equation :线性方程式Linear function :线性函数Linearity :线性Linearization :线性化Line in the plane :平面上之直线Line in space :空间之直线Lobachevski geometry :罗巴切夫斯基几何Local extremum :局部极值Local maximum and minimum :局部极大值与极小值Logarithm :对数Logarithmic function :对数函数 I:Implicit differentiation :隐求导法Implicit function :隐函数Improper integral :瑕积分Increasing/Decreasing Test :递增或递减试验法Increment :增量Increasing Function :增函数Indefinite integral :不定积分Independent variable :自变数Indeterminate from :不定型Inequality :不等式Infinite point :无穷极限Infinite series :无穷级数Inflection point :反曲点Instantaneous velocity :瞬时速度Integer :整数Integral :积分Integrand :被积分式Integration :积分Integration by part :分部积分法Intercepts :截距Intermediate value of Theorem :中间值定理Interval :区间Inverse function :反函数Inverse trigonometric function :反三角函数Iterated integral :逐次积分 H:Higher mathematics 高等数学/高数E、F、G、H:Ellipse :椭圆Ellipsoid :椭圆体Epicycloid :外摆线Equation :方程式Even function :偶函数Expected Valued :期望值Exponential Function :指数函数Exponents , laws of :指数率Extreme value :极值Extreme Value Theorem :极值定理Factorial :阶乘First Derivative Test :一阶导数试验法First octant :第一卦限Focus :焦点Fractions :分式Function :函数Fundamental Theorem of Calculus :微积分基本定理Geometric series :几何级数Gradient :梯度Graph :图形Green Formula :格林公式Half-angle formulas :半角公式Harmonic series :调和级数Helix :螺旋线Higher Derivative :高阶导数Horizontal asymptote :水平渐近线Horizontal line :水平线Hyperbola :双曲线Hyper boloid :双曲面 D:Decreasing function :递减函数Decreasing sequence :递减数列Definite integral :定积分Degree of a polynomial :多项式之次数Density :密度Derivative :导数 of a composite function :复合函数之导数 of a constant function :常数函数之导数 directional :方向导数 domain of :导数之定义域 of exponential function :指数函数之导数 higher :高阶导数 partial :偏导数 of a power function :幂函数之导数 of a power series :羃级数之导数 of a product :积之导数 of a quotient :商之导数 as a rate of change :导数当作变率 right-hand :右导数 second :二阶导数 as the slope of a tangent :导数看成切线之斜率Determinant :行列式Differentiable function :可导函数Differential :微分Differential equation :微分方程 partial :偏微分方程Differentiation :求导法 implicit :隐求导法 partial :偏微分法 term by term :逐项求导法Directional derivatives :方向导数Discontinuity :不连续性Disk method :圆盘法Distance :距离Divergence :发散Domain :定义域Dot product :点积Double integral :二重积分 change of variable in :二重积分之变数变换 in polar coordinates :极坐标二重积分 C:Calculus :微积分 differential :微分学 integral :积分学Cartesian coordinates :笛卡儿坐标,一般指直角坐标Cartesian coordinates system :笛卡儿坐标系Cauch’s Mean Value Theorem :柯西均值定理Chain Rule :连锁律Change of variables :变数变换Circle :圆Circular cylinder :圆柱Closed interval :封闭区间Coefficient :系数Composition of function :函数之合成Compound interest :复利Concavity :凹性Conchoid :蚌线Cone :圆锥Constant function :常数函数Constant of integration :积分常数Continuity :连续性 at a point :在一点处之连续性 of a function :函数之连续性 on an interval :在区间之连续性 from the left :左连续 from the right :右连续Continuous function :连续函数Convergence :收敛 interval of :收敛区间 radius of :收敛半径Convergent sequence :收敛数列 series :收敛级数Coordinate:s:坐标Cartesian :笛卡儿坐标 cylindrical :柱面坐标 polar :极坐标 rectangular :直角坐标spherical :球面坐标Coordinate axes :坐标轴Coordinate planes :坐标平面Cosine function :余弦函数Critical point :临界点Cubic function :三次函数Curve :曲线Cylinder:圆柱Cylindrical Coordinates :圆柱坐标A、B:Absolute convergence :绝对收敛Absolute extreme values :绝对极值Absolute maximum and minimum :绝对极大与极小Absolute value :绝对值Absolute value function :绝对值函数Acceleration :加速度Antiderivative :反导数Approximate integration :近似积分Approximation :逼近法 by differentials :用微分逼近 linear :线性逼近法 by Simpson’s Rule :Simpson法则逼近法 by the Trapezoidal Rule :梯形法则逼近法Arbitrary constant :任意常数Arc length :弧长Area :面积 under a curve :曲线下方之面积 between curves :曲线间之面积 in polar coordinates :极坐标表示之面积 of a sector of a circle :扇形之面积 of a surface of a revolution :旋转曲面之面积Asymptote :渐近线 horizontal :水平渐近线 slant :斜渐近线 vertical :垂直渐近线Average speed :平均速率Average velocity :平均速度Axes, coordinate :坐标轴Axes of ellipse :椭圆之轴Binomial series :二项级
小七木瓜
我们的汉字“函数”写起来麻烦,就用英语“函数”的字头f(当然也可以用其他的如v,g,h,等等)表示。一写”f(x)",就是说我们面前有一个函数。至于它的式子是啥,那谁也不清楚,代数嘛,它可以代表各式各样的式子,当然,有的函数是没有解析式子的。反正它的自变量是括号里的字母x。例如:函数y=f(x)=7x²-3|x|,(x∈r).那么,x=4,你会求函数值;如果把x擦掉,它的位置都写上-x,就是f(-x)=7·(-x)²-3|-x|=7x²-3|x|,哈哈,又回来啦,它恰好和原来的函数f(x)相等啦。于是,我们从函数f(x)的图像恰恰看到了一个“特征”——图像关于y轴成左右对称的。(我的题目里故意把二次项,一次项的系数都写成了“奇数”。)这样的函数我们就叫他“偶函数”。它的式子有鲜明的性质:f(x)-f(-x)=0.换句话说,-5,+5的函数值相等,一相减,可不就是0了呗。对于“奇函数”来说,也有它的特征:f(x)+f(-x)=0.这是肯定的。你想,图像关于o点成中心对称图形,就拿函数z=g(t)=4t³-2t来说,当t=5,函数值你会求;当t=-5,函数值你也可以求出来。就从原则上说吧:g(-t)=4·(-t)³-2·(-t)=-4t³+2t=-(4t³-2t),哈哈=-g(t)这个式子啦。这是啥意思?它表明了在o点左右与o等距离的两个数(自变量)的函数值相等?不,是绝对值相等,是两个互为相反数的东西。画在图像上,就拿t=5来说,g(5)=490,g(-5)=-490.于是反映在图像上,就是将o点左边的半块图像以o点为中心,在坐标系平面上旋转180度,恰恰可以与o点右边的半块图像【完全重合】。当然我们可以看出这种函数的性质:g(t)+g(-t)=0,或写成一般的形式:f(-x)+f(x)=0.(写成f(-x)=-f(x)也可以)。还有关键的一点,请你牢记:具有奇偶性的函数,定义域必须是关于o点对称的;定义域不关于o点对称的函数,都不可能具有奇偶性。给你出一道题吧:请分析函数y=f(x)=﹙x-1﹚²+5的奇偶性。(答:飞机飞欧)。
优质英语培训问答知识库