翻滚的石榴
七年级数学上册期中水平测试 一、做出你的选择(每小题3分,共30分)1.如果向东走2km记作+2km,那么-3km表示( ).(A)向东走3km (B)向南走3km (C)向西走3km (D)向北走3km2.学校、家、书店依次座落在一条南北走向的大街上,学校在家的南边20,书店在家北边100,张明同学从家里出发,向北走了50,接着又向北走了—70,此时张明的位置在 ( ).(A)在家 (B) 学校 (C) 书店 (D) 不在上述地方3.下列各式中,一定成立的是( ).(A) (B) (C) (D) 4.若 的相反数是3, ,则 的值为( ).(A)-8 (B)2 (C)8或-2 (D)-8或25.如果 ,那么下列关系式中正确的是( ).(A) (B) (C) (D) 6.2007年中国月球探测工程的“嫦娥一号”卫星将发射升空飞向月球.已知地球距离月球表面约为384000千米,那么这个距离用科学记数法(保留三个有效数字)表示应为( ).(A)× 千米 (B)× 千米 (C)× 千米 (D)× 千米7.若 是三次三项式,则 等于( ). (A)±1 (B)1 (C)-1 (D)以上都不对8.下列各式,成立的是( ).(A) (B) (C) (D) 9.某种品牌的彩电降价30℅以后,每台售价为 元,则该品牌彩电每台原价为( ).(A)元 (B)元 (C) 元 (D) 元10.一列数:0,1,2,3,6,7,14,15,30,____,_____,____这串数是由小明按照一定规则写下来的,他第一次写下“0,1”,第二次按着写“2,3”,第三次接着写“6,7”第四次接着写“14,15”,就这样一直接着往下写,那么这串数的最后三个数应该是下面的( ). (A)31,32,64 (B)31,62,63 (C)31,32,33 (D)31,45,46二、填得圆圆满满(每小题3分,共30分)1. 的相反数是 , 倒数是 ;绝对值等于3的数是 .2.若m、n满足 =0,则 3.如果 是任意两个不等于零的数,定义运算○+如下(其余符号意义如常): ○+b= ,那么[(1○+2) ○+3]-[1○+(2○+3)]的值是_____________.4.用计算器计算(保留3个有效数字): = .5.通过希望工程的帮助,我国西部某省近三年来走入“希望小学”读书的失学儿童约有 人,这个数据是用四舍五入法得到的近似数,它有________个有效数字,精确到 位.6.单项式 - 的系数是 ,次数是 .7.如果 是同类项,那么 = .8.当 =2时,代数式 的值等于-17,那么当x=-1时,代数式 的值等于_______________.9.一个三位数,十位数字为 ,百位上的数字是十位上的2倍,个位数字比十位数字大2,用代数式表示这个三位数是 .10.(旅顺市)小王利用计算机设计了一个计算程序,输入和输出的数据如下表: 输入 … 1 2 3 4 5 …输出 … …那么,当输入数据为8时,输出的数据为 .三、用心解答(共40分)1.(10分)计算:(1) ; (2) .2.(7分)当 时,求代数式 的值.3.(7分)有这样一道题:“计算 的值,其中 ” .甲同学把“ ”错抄成“ ”,但他计算的结果也是正确的,试说明理由,并求出这个结果?4.(8分)一辆货车从超市出发,向东走3千米到达小李家,继续向东走1. 5千米到达小张家,然后又回头向西走9. 5千米到达小陈家,最后回到超市.(1)以超市为原点,向东为正,以1个单位长表示1千米,在数轴上表示出上述位置.(2)小陈家距小李家多远?(3)若货车每千米耗油0. 5升,这趟路货车共耗油多少升?5.(8分)邮购一种图书,每本定价 元,不足100本时,另加书价的5%的邮资. (1)要邮购 的正整数)本这种图书,总计金额是多少元? (2)当一次邮购超过100本时,书店除付邮资外,还给予优惠10%.计算 元, 本时的总计金额是多少元? 四、综合提升(共20分)1.(10分)从2开始,连续的偶数相加,它们和的情况如下表:加数的个数n S1 2 = 1×22 2+4 = 6 = 2×33 2+4+6 = 12 = 3×44 2+4+6+8 = 20 = 4×55 2+4+6+8+10 = 30 = 5×6(1)若 时,则 S的值为___________________________.(2)根据表中的规律猜想:用n的代数式表示S的公式为: … (3)根据上题的规律计算 … 的值(要有过程).7.(10分)某织布厂有工人200名,为改善经营,增设制衣项目,已知每人每天能织布30米,或利用所织布制衣4件,制衣一件用布米,将布直接出售,每米布可获利2元;将布制成衣后出售,每件可获利25元,若每名工人一天只能做一项工作,且不计其他因素,设安排 名工人制衣,则:(1)一天中制衣所获得的利润为P= (用含的代数式表示);(2)一天中剩余布出售所获利润为Q= (用含的代数式表示);(3)当安排166名工人制衣时,所获总利润W(元)是多少?能否安排167名工人制衣以提高利润?试说明理由.参考答案:一、1.C 2.B 3.A 4.D 5.D 6.B 7.B 8.C 9.D 10.二、1. 2.9 3. 4. 5.2,万 6. ,6 7.2 8.22 9.211 +2 10. 三、1.(1)-395;(2) .2. .3.提示:因求值式化简结果是 ,与 值无关,2.4.(1)略;(2)8千米;(3) =9. 5(升).5.(1) ;(2) .四、1.(1)72;(2) ;(3) = - =1001×(1001+1)-50×(50+1)=1003002-2520=1000452.2.(1) ;(2) ;(2)当 时,W=P+Q= + =16648(元);不能,因为若安排167名工人制衣,33名工人所织的布不够制衣所用,造成窝工.
橘子的新生命
2009七年级上册数学期中试卷 推荐答案 1. 甲、乙、丙三人在A、B两块地植树,A地要植900棵,B地要植1250棵.已知甲、乙、丙每天分别能植树24,30,32棵,甲在A地植树,丙在B地植树,乙先在A地植树,然后转到B地植树.两块地同时开始同时结束,乙应在开始后第几天从A地转到B地? 2. 有三块草地,面积分别是5,15,24亩.草地上的草一样厚,而且长得一样快.第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天? 3. 某工程,由甲、乙两队承包,天可以完成,需支付1800元;由乙、丙两队承包,3+3/4天可以完成,需支付1500元;由甲、丙两队承包,2+6/7天可以完成,需支付1600元.在保证一星期内完成的前提下,选择哪个队单独承包费用最少? 4. 一个圆柱形容器内放有一个长方形铁块.现打开水龙头往容器中灌水.3分钟时水面恰好没过长方体的顶面.再过18分钟水已灌满容器.已知容器的高为50厘米,长方体的高为20厘米,求长方体的底面面积和容器底面面积之比. 5. 甲、乙两位老板分别以同样的价格购进一种时装,乙购进的套数比甲多1/5,然后甲、乙分别按获得80%和50%的利润定价出售.两人都全部售完后,甲仍比乙多获得一部分利润,这部分利润又恰好够他再购进这种时装10套,甲原来购进这种时装多少套? 6. 有甲、乙两根水管,分别同时给A,B两个大小相同的水池注水,在相同的时间里甲、乙两管注水量之比是7:5.经过2+1/3小时,A,B两池中注入的水之和恰好是一池.这时,甲管注水速度提高25%,乙管的注水速度不变,那么,当甲管注满A池时,乙管再经过多少小时注满B池? 7. 小明早上从家步行去学校,走完一半路程时,爸爸发现小明的数学书丢在家里,随即骑车去给小明送书,追上时,小明还有3/10的路程未走完,小明随即上了爸爸的车,由爸爸送往学校,这样小明比独自步行提早5分钟到校.小明从家到学校全部步行需要多少时间? 8. 甲、乙两车都从A地出发经过B地驶往C地,A,B两地的距离等于B,C两地的距离.乙车的速度是甲车速度的80%.已知乙车比甲车早出发11分钟,但在B地停留了7分钟,甲车则不停地驶往C地.最后乙车比甲车迟4分钟到C地.那么乙车出发后几分钟时,甲车就超过乙车. 9. 甲、乙两辆清洁车执行东、西城间的公路清扫任务.甲车单独清扫需要10小时,乙车单独清扫需要15小时,两车同时从东、西城相向开出,相遇时甲车比乙车多清扫12千米,问东、西两城相距多少千米? 10. 今有重量为3吨的集装箱4个,重量为吨的集装箱5个,重量为吨的集装箱14个,重量为1吨的集装箱7个.那么最少需要用多少辆载重量为吨的汽车可以一次全部运走集装箱? 小学数学应用题综合训练(02) 11. 师徒二人共同加工170个零件,师傅加工零件个数的1/3比徒弟加工零件个数的1/4还多10个,那么徒弟一共加工了几个零件? 12. 一辆大轿车与一辆小轿车都从甲地驶往乙地.大轿车的速度是小轿车速度的80%.已知大轿车比小轿车早出发17分钟,但在两地中点停了5分钟,才继续驶往乙地;而小轿车出发后中途没有停,直接驶往乙地,最后小轿车比大轿车早4分钟到达乙地.又知大轿车是上午10时从甲地出发的.那么小轿车是在上午什么时候追上大轿车的. 13. 一部书稿,甲单独打字要14小时完成,,乙单独打字要20小时完成.如果甲先打1小时,然后由乙接替甲打1小时,再由甲接替乙打1小时.......两人如此交替工作.那么打完这部书稿时,甲乙两人共用多少小时? 14. 黄气球2元3个,花气球3元2个,学校共买了32个气球,其中花气球比黄气球少4个,学校买哪种气球用的钱多? 15. 一只帆船的速度是60米/分,船在水流速度为20米/分的河中,从上游的一个港口到下游的某一地,再返回到原地,共用3小时30分,这条船从上游港口到下游某地共走了多少米? 16. 甲粮仓装43吨面粉,乙粮仓装37吨面粉,如果把乙粮仓的面粉装入甲粮仓,那么甲粮仓装满后,乙粮仓里剩下的面粉占乙粮仓容量的1/2;如果把甲粮仓的面粉装入乙粮仓,那么乙粮仓装满后,甲粮仓里剩下的面粉占甲粮仓容量的1/3,每个粮仓各可以装面粉多少吨? 17. 甲数除以乙数,乙数除以丙数,商相等,余数都是2,甲、乙两数之和是478.那么甲、乙丙三数之和是几? 18. 一辆车从甲地开往乙地.如果把车速减少10%,那么要比原定时间迟1小时到达,如果以原速行驶180千米,再把车速提高20%,那么可比原定时间早1小时到达.甲、乙两地之间的距离是多少千米? 19. 某校参加军训队列表演比赛,组织一个方阵队伍.如果每班60人,这个方阵至少要有4个班的同学参加,如果每班70人,这个方阵至少要有3个班的同学参加.那么组成这个方阵的人数应为几人? 20. 甲、乙、丙三台车床加工方形和圆形的两种零件,已知甲车床每加工3个零件中有2个是圆形的;乙车床每加工4个零件中有3个是圆形的;丙车床每加工5个零件中有4个是圆形的.这天三台车床共加工了58个圆形零件,而加工的方形零件个数的比为4:3:3,那么这天三台车床共加工零件几个? 小学数学应用题综合训练(03) 21. 圈金属线长30米,截取长度为A的金属线3根,长度为B的金属线5根,剩下的金属线如果再截取2根长度为B的金属线还差米,如果再截取2根长度为A的金属线则还差2米,长度为A的等于几米? 22. 某公司要往工地运送甲、乙两种建筑材料.甲种建筑材料每件重700千克,共有120件,乙种建筑材料每件重900千克,共有80件,已知一辆汽车每次最多能运载4吨,那么5辆相同的汽车同时运送,至少要几次? 23. 从王力家到学校的路程比到体育馆的路程长1/4,一天王力在体育馆看完球赛后用17分钟的时间走到家,稍稍休息后,他又用了25分钟走到学校,其速度比从体育馆回来时每分钟慢15米,王力家到学校的距离是多少米? 24. 师徒两人合作完成一项工程,由于配合得好,师傅的工作效率比单独做时要提高1/10,徒弟的工作效率比单独做时提高1/5.两人合作6天,完成全部工程的2/5,接着徒弟又单独做6天,这时这项工程还有13/30未完成,如果这项工程由师傅一人做,几天完成? 25. 六年级五个班的同学共植树100棵.已知每个班植树的棵数都不相同,且按数量从多到少的排名恰好是一、二、三、四、五班.又知一班植的棵数是二、三班植的棵数之和,二班植的棵数是四、五班植的棵数之和,那么三班最多植树多少棵? 26. 甲每小时跑13千米,乙每小时跑11千米,乙比甲多跑了20分钟,结果乙比甲多跑了2千米.乙总共跑了多少千米? 27. 有高度相等的A,B两个圆柱形容器,内口半径分别为6厘米和8厘米.容器A中装满水,容器B是空的,把容器A中的水全部倒入容器B中,测得容器B中的水深比容器高的7/8还低2厘米.容器的高度是多少厘米? 28. 有104吨的货物,用载重为9吨的汽车运送.已知汽车每次往返需要1小时,实际上汽车每次多装了1吨,那么可提前几小时完成. 29. 师、徒二人第一天共加工零件225个,第二天采用了新工艺,师傅加工的零件比第一天增加了24%,徒弟增加了45%,两人共加工零件300个,第二天师傅加工了多少个零件?徒弟加工了几个零件? 30. 奋斗小学组织六年级同学到百花山进行野营拉练,行程每天增加2千米.去时用了4天,回来时用了3天,问学校距离百花山多少千米? 小学数学应用题综合训练(04) 31. 某地收取电费的标准是:每月用电量不超过50度,每度收5角;如果超出50度,超出部分按每度8角收费.每月甲用户比乙用户多交3元3角电费,这个月甲、乙各用了多少度电? 32. 王师傅计划用2小时加工一批零件,当还剩160个零件时,机器出现故障,效率比原来降低1/5,结果比原计划推迟20分钟完成任务,这批零件有多少个? 33. 妈妈给了红红一些钱去买贺年卡,有甲、乙、丙三种贺年卡,甲种卡每张元.用这些钱买甲种卡要比买乙种卡多8张,买乙种卡要比买丙种卡多买6张.妈妈给了红红多少钱?乙种卡每张多少钱? 34. 一位老人有五个儿子和三间房子,临终前立下遗嘱,将三间房子分给三个儿子各一间.作为补偿,分到房子的三个儿子每人拿出1200元,平分给没分到房子的两个儿子.大家都说这样的分配公平合理,那么每间房子的价值是多少元? 35. 小明和小燕的画册都不足20本,如果小明给小燕A本,则小明的画册就是小燕的2倍;如果小燕给小明A本,则小明的画册就是小燕的3倍.原来小明和小燕各有多少本画册? 36. 有红、黄、白三种球共160个.如果取出红球的1/3,黄球的1/4,白球的1/5,则还剩120个;如果取出红球的1/5,黄球的1/4,白球的1/3,则剩116个,问(1)原有黄球几个?(2)原有红球、白球各几个? 37. 爸爸、哥哥、妹妹三人现在的年龄和是64岁,当爸爸的年龄是哥哥年龄的3倍时,妹妹是9岁.当哥哥的年龄是妹妹年龄的2倍时,爸爸是34岁.现在三人的年龄各是多少岁? 38. B在A,C两地之间.甲从B地到A地去送信,出发10分钟后,乙从B地出发去送另一封信.乙出发后10分钟,丙发现甲乙刚好把两封信拿颠倒了,于是他从B地出发骑车去追赶甲和乙,以便把信调过来.已知甲、乙的速度相等,丙的速度是甲、乙速度的3倍,丙从出发到把信调过来后返回B地至少要用多少时间? 39. 甲、乙两个车间共有94个工人,每天共加工1998竹椅.由于设备和技术的不同,甲车间平均每个工人每天只能生产15把竹椅,而乙车间平均每个工人每天可以生产43把竹椅.甲车间每天竹椅产量比乙车间多几把? 40. 甲放学回家需走10分钟,乙放学回家需走14分钟.已知乙回家的路程比甲回家的路程多1/6,甲每分钟比乙多走12米,那么乙回家的路程是几米? 小学数学应用题综合训练(05) 41. 某商品每件成本72元,原来按定价出售,每天可售出100件,每件利润为成本的25%,后来按定价的90%出售,每天销售量提高到原来的倍,照这样计算,每天的利润比原来增加几元? 42. 甲、乙两列火车的速度比是5:4.乙车先发,从B站开往A站,当走到离B站72千米的地方时,甲车从A站发车往B站,两列火车相遇的地方离A,B两站距离的比是3:4,那么A,B两站之间的距离为多少千米? 43. 大、小猴子共35只,它们一起去采摘水蜜桃.猴王不在的时候,一只大猴子一小时可采摘15千克,一只小猴子一小时可采摘11千克.猴王在场监督的时候,每只猴子不论大小每小时都可以采摘12千克.一天,采摘了8小时,其中只有第一小时和最后一小时有猴王在场监督,结果共采摘4400千克水蜜桃.在这个猴群中,共有小猴子几只? 44. 某次数学竞赛设一、二等奖.已知(1)甲、乙两校获奖的人数比为6:5.(2)甲、乙来年感校获二等奖的人数总和占两校获奖人数总和的60%.(3)甲、乙两校获二等奖的人数之比为5:6.问甲校获二等奖的人数占该校获奖总人数的百分数是几? 45. 已知小明与小强步行的速度比是2:3,小强与小刚步行的速度比是4:5.已知小刚10分钟比小明多走420米,那么小明在20分钟里比小强少走几米? 46. 加工一批零件,原计划每天加工15个,若干天可以完成.当完成加工任务的3/5时,采用新技术,效率提高20%.结果,完成任务的时间提前10天,这批零件共有几个? 47. 甲、乙二人在400米的圆形跑道上进行10000米比赛.两人从起点同时同向出发,开始时甲的速度为8米/秒,乙的速度为6米/秒,当甲每次追上乙以后,甲的速度每秒减少2米,乙的速度每秒减少米.这样下去,直到甲发现乙第一次从后面追上自己开始,两人都把自己的速度每秒增加米,直到终点.那么领先者到达终点时,另一人距离终点多少米? 48. 小明从家去学校,如果他每小时比原来多走千米,他走这段路只需原来时间的4/5;如果他每小时比原来少走千米,那么他走这段路的时间就比原来时间多几分几之? 49. 甲、乙、丙、丁现在的年龄和是64岁.甲21岁时,乙17岁;甲18岁时,丙的年龄是丁的3倍.丁现在的年龄是几岁? 50. 加工一批零件,原计划每天加工30个.当加工完1/3时,由于改进了技术,工作效率提高了10%,结果提前了4天完成任务.问这批零件共有几个? 小学数学应用题综合训练(06) 51. 自动扶梯以均匀的速度向上行驶,一男孩与一女孩同时从自动扶梯向上走,男孩的速度是女孩的2倍,已知男孩走了27级到达扶梯的顶部,而女孩走了18级到达顶部.问扶梯露在外面的部分有多少级? 52. 两堆苹果一样重,第一堆卖出2/3,第二堆卖出50千克,如果第一堆剩下的苹果比第二堆剩下的苹果少,那么两堆剩下的苹果至少有多少千克? 53. 甲、乙两车同时从A地出发,不停的往返行驶于A、B两地之间.已知甲车的速度比乙车快,并且两车出发后第一次和第二次相遇都杂途中C地,甲车的速度是乙车的几倍? 54. 一只小船从甲地到乙地往返一次共用2小时,回来时顺水,比去时的速度每小时多行8千米,因此第二小时比第一小时多行6千米.求甲、乙两地的距离. 55. 甲、乙两车分别从A、B两地出发,并在A,B两地间不断往返行驶.已知甲车的速度是15千米/小时,甲、乙两车第三次相遇地点与第四次相遇地点相差100千米.求A、B两地的距离. 56. 某人沿着向上移动的自动扶梯从顶部朝底下用了7分30秒,而他沿着自动扶梯从底朝上走到顶部只用了1分30秒.如果此人不走,那么乘着扶梯从底到顶要多少时间?如果停电,那么此人沿扶梯从底走到顶要多少时间? 57. 甲、乙两个圆柱体容器,底面积比为5:3,甲容器水深20厘米,乙容器水深10厘米.再往两个容器中注入同样多的水,使得两个容器中的水深相等.这时水深多少厘米? 58. A、B两地相距207千米,甲、乙两车8:00同时从A地出发到B地,速度分别为60千米/小时,54千米/小时,丙车8:30从B地出发到A地,速度为48千米/小时.丙车与甲、乙两车距离相等时是几点几分? 59. 一个长方形的周长是130厘米,如果它的宽增加1/5,长减少1/8,就得到一个相同周长的新长方形.求原长方形的面积. 60. 有一长方形,它的长与宽的比是5:2,对角线长29厘米,求这个长方形的面积. 小学数学应用题综合训练(07) 61. 有一个果园,去年结果的果树比不结果的果树的2倍还多60棵,今年又有160棵果树结了果,这时结果的果树正好是不结果的果树的5倍.果园里共有多少棵果树? 62. 小明步行从甲地出发到乙地,李刚骑摩托车同时从乙地出发到甲地.48分钟后两人相遇,李刚到达甲地后马上返回乙地,在第一次相遇后16分钟追上小明.如果李刚不停地往返于甲、乙两地,那么当小明到达乙地时,李刚共追上小明几次? 63. 同样走100米,小明要走180步,父亲要走120步.父子同时同方向从同一地点出发,如果每走一步所用的时间相同,那么父亲走出450米后往回走,还要走多少步才能遇到小明? 64. 一艘轮船在两个港口间航行,水速为6千米/小时,顺水航行需要4小时,逆水航行需要7小时,求两个港口之间的距离. 65. 有甲、乙、丙三辆汽车,各以一定的速度从A地开往B地,乙比丙晚出发10分钟,出发后40分钟追上丙;甲比乙又晚出发10分钟,出发后60分钟追上丙,问甲出发后几分钟追上乙? 66. 甲、乙合作完成一项工作,由于配合的好,甲的工作效率比单独做时提高1/10,乙的工作效率比单独做时提高1/5,甲、乙合作6小时完成了这项工作,如果甲单独做需要11小时,那么乙单独做需要几小时? 67. A、B、C、D、E五名学生站成一横排,他们的手中共拿着20面小旗.现知道,站在C右边的学生共拿着11面小旗,站在B左边的学生共拿着10面小旗,站在D左边的学生共拿着8面小旗,站在E左边的学生共拿着16面小旗.五名学生从左至右依次是谁?各拿几面小旗? 68. 小明在360米长的环行的跑道上跑了一圈,已知他前一半时间每秒跑5米,后一半时间每秒跑4米,问他后一半路程用了多少时间? 69. 小英和小明为了测量飞驶而过的火车的长度和速度,他们拿了两块秒表,小英用一块表记下火车从他面前通过所花的时间是15秒,小明用另一块表记下了从车头过第一根电线杆到车尾过第二根电线杆所花的时间是18秒,已知两根电线杆之间的距离是60米,求火车的全长和速度. 70. 小明从家到学校时,前一半路程步行,后一半路程乘车;他从学校到家时,前1/3时间乘车,后2/3时间步行.结果去学校的时间比回家的时间多20分钟,已知小明从家到学校的路程是多少千米? 小学数学应用题综合训练(08) 71. 数学练习共举行了20次,共出试题374道,每次出的题数是16,21,24问出16,21,24题的分别有多少次? 72. 一个整数除以2余1,用所得的商除以5余4,再用所得的商除以6余1.用这个整数除以60,余数是多少? 73. 少先队员在校园里栽的苹果树苗是梨树苗的2倍.如果每人栽3棵梨树苗,则余2棵;如果每人栽7棵苹果树苗,则少6棵.问共有多少名少先队员?苹果和梨树苗共有多少棵? 74. 某人开汽车从A城到B城要行200千米,开始时他以56千米/小时的速度行驶,但途中因汽车故障停车修理用去半小时,为了按时到达,他必须把速度增加14千米/小时,跑完以后的路程,他修车的地方距离A 城多少千米? 75. 甲、乙两人分别从A、B两地同时出发,相向而行,乙的速度是甲的2/3,两人相遇后继续前进,甲到达B地,乙到达A地立即返回,已知两人第二次相遇的地点距离第一次相遇的地点是3000米,求A、B两地的距离. 76. 一条船往返于甲、乙两港之间,已知船在静水中的速度为9千米/小时,平时逆行与顺行所用时间的比为2:1.一天因下雨,水流速度为原来的2倍,这条船往返共用10小时,问甲、乙两港相距多少千米? 77. 某学校入学考试,确定了录取分数线,报考的学生中,只有1/3被录取,录取者平均分比录取分数线高6分,没有被录取的同学其平均分比录取分数线低15分,所有考生的平均分是80分,问录取分数线是多少分? 78. 一群学生搬砖,如果有12人每人各搬7块,其余的每人搬5块,那么最后余下148块;如果有30人每人各搬8块,其余的每人搬7块,那么最后余下20块.问学生共有多少人?砖有多少块? 79. 甲、乙两车分别从A、B两地同时相向而行,已知甲车速度与乙车速度之比为4:3,C地在A、B之间,甲、乙两车到达C地的时间分别是上午8点和下午3点,问甲、乙两车相遇是什么时间? 80. 一次棋赛,记分方法是,胜者得2分,负者得0分,和棋两人各得1分,每位选手都与其他选手各对局一次,现知道选手中男生是女生的10倍,但其总得分只为女生得分的倍,问共有几名女生参赛?女生共得几分? 小学数学应用题综合训练(09) 81. 有若干个自然数,它们的算术平均数是10,如果从这些数中去掉最大的一个,则余下的算术平均数为9;如果去掉最小的一个,则余下的算术平均数为11,这些数最多有多少个?这些数中最大的数最大值是几? 82. 某班有少先队员35人,这个班有男生23人,这个班女生少先队员比男生非少先队员多几人? 83. 小东计划到周口店参观猿人遗址.如果他坐汽车以40千米/小时的速度行驶,那么比骑车去早到3小时,如果他以8千米/小时的速度步行去,那么比骑车晚到5小时,小东的出发点到周口店有多少千米? 84. 甲、乙两船在相距90千米的河上航行,如果相向而行,3小时相遇,如果同向而行则15小时甲船追上乙船.求在静水中甲、乙两船的速度. 85. 二年级两个班共有学生90人,其中少先队员有71人,一班少先队员占本班人数的75%,二班少先队员占本班人数的5/6.一班少先队员人数比二班少先队员人数多几人? 86. 一个容器中已注满水,有大、中、小三个球.第一次把小球沉入水中,第二次把小球取出,把中球沉入水中,第三次把中球取出,把小球和大球一起沉入水中,现知道每次从容器中溢出水量的情况是:第一次是第二次的1/2,第三次是第二次的倍.求三个球的体积之比. 87. 某人翻越一座山用了2小时,返回用了小时,他上山的速度是3000米/小时,下山的速度是4500米/小时.问翻越这座山要走多少米? 88. 钢筋原材料每根长米,每套钢筋架子用长米、米和米的钢筋各一段.现需要绑好钢筋架子100套,至少要用去原材料多少根? 89. 有一块铜锌合金,其中铜和锌的比2:3.现知道再加入6克锌,熔化后共得新合金36克,新合金中铜和锌的比是多少?
小小小文er
1.|-2|的绝对值的相反数是( ).(A)-2 (B)2 (C)- (D) 2.给出的下列各数中是负数的为( ).(A)-(-4) (B)-|-4| (C)(-2)2 (D)-(-2)3 3.若三个有理数相乘,积大于零,则其中负因数的个数( ).(A)1个 (B)2个 (C)3个 (D)2个或0个负因数4.下列语句中正确的有( )个.(1)任何有理数都有相反数(2)任何有理数都有倒数(3)两个有理数的和一定大于其中任意一个加数(4)两个负有理数,绝对值大的反而小(5)一个数的平方总比它本身大(A)1个 (B)2个 (C)3个 (D)4个5.下列说法正确的是( ).(A)近似数与的精确度相同 (B)近似数3万与30000的精确度相同 (C)近似数×103有两个有效数字 (D)有理数5938精确到十位就是59406.去掉方程3(x-1)-2(x+5)=6中的括号,结果正确的是( ).(A)3x-3-2x+10=6 (B)3x-3-2x-10=6 (C)3x-1-2x+5=6 (D)3x-1-2x-5=67.小明同学把2000元的压岁钱存入银行,年利率为,一年后小明到银行交纳完20%的利息税之后,应领回( ).(A)45元 (B)1636元 (C)2036元 (D)2045元8.如图是一个简单的运算程序:输入x → -3 → ×(-3) → 输出结果要使输出的结果为3,则需输入的x值为( ).(A)3 (B)-3 (C)2 (D) 09.右图是2006年8月份的日历,如图那样,用一个圈竖着圈住3个数,如果被圈住的3个数之和为39,则这三个数中最小的一个数为( ).(A)1 (B)2 (C)6 (D)810.本学期金曼克中学进行了一次数学竞赛,共20道题,其中做对一题得5分,错一题扣2分,不做得0分,一同学做完了全部题目,得了79分,则他做对的题目是( ).(A)15道 (B)16道 (C)17道 (D)18道二、填空题:11.-3与3之间的整数有.在(-1)3、(-1)2、-22、(-2)2四个有理数中,最大数与最小数的和等于.方程2(1-x)=3(x-1)的解是万用科学记数法表示为.有理数a,b在数轴上的位置如下图所示: b a 0 则将a,b,-a,-b按照从小到大的排列顺序为______________________________ 16.已知轮船在逆水中前进的速度为m千米/时,水流的速度为2千米/时,则这轮船在顺水中航行的速度是_______ 17.如果代数式2x-1与3x-5的值互为相反数,那么x=_______ 18.苹果每千克3元,买10千克以上(包括10千克)可按九折优惠,某人买若干千克苹果,共付款元,则他买了________千克苹果.三、解答题:19.计算:(1)-42×( )3-12÷〔2-(-2)2〕(2)(- - +1 )×(-24)20解方程x- =2- 21.一天课外活动时间,七年级8班学生家长问宋润东老师,你班有多少名学生?宋润东老师想了想说,一半学生在学习数学,四分之一学生在学习音乐,七分之一的学生在阅览室读书,还有6名学生在微机室学习微机,你知道金曼克中学七年级8班有多少名学生吗?22.某经营户在蔬菜批发市场上了解到以下信息:蔬菜品种 红辣椒 黄瓜 西红柿 茄子批发价(元/千克) 4 零售价(元/千克) 5 他用116元钱从市场上批发了红辣椒和西红柿共44千克到菜市场去卖,当天卖完,你能算出他赚到了多少钱吗?23.两种移动电话计费方式表 全球通 神州行月租费 50元/月 0本地通话费 元/分 元/分(1)一个月内在本地通话200分和300分,按两种计费方式各需交费多少元?(2)对于某个本地通话时间,会出现两种计费方式的收费一样的情况吗? 回答者: aa780208
玲玲--00
一、选择题:(每题只有一个结论是正确的,每小题3分,共24分)
1.下列说法正确的是( )
①0是绝对值最小的有理数;②相反数大于本身的 数是负数;
③数轴上原点两侧的数互为相反数;④两个数比较,绝对值大的反而小.
A.①② B.①③ C.①②③ D.①②③④
2.据相关报道,截止到今年四月,我国已完成万个农村教学点的建设任务.万可用科学记数法表示为()
A ×103 ×103 ×104 ×104
3.下列各组算式中,运算结果最小的是()
A. B. C. D.
4.下列各对数中,数值相等的是( )
A. 与 B. 与
C. 与 D. 与
5.单项式 系数与次数的和是( )
6.已知实数 满足 则多项式 的值为( )A. 1 B. -1 C. 0 D. 2
7.下列说法错误的是()
A. 是一个单项式 B. 是一个多项式
C. 是一个代数式 D. 是一个整式
8. 一个两位数,个位上的数是 ,十位上的'数是 ,交换个位与十位上的数字得到一个新的两位数,则这两个两位数的和是()
A. B. C. D.
二、填空题(每小题3分,共18分)
9. 某旅游景点11月5日的最高气温为8℃,最低气温为 ℃,那么该景点这天的温差是____℃.
10. 已知P是数轴上的一点 ,把P点向左移动 个单位后再向右移动 个单位长度,那么P点表示的数是_____.
11. 计算1-2+3-4+5-6+…+2011-2012的值是______.
12.如果 =1时,代数式 的值是5,那么 =-1时代数式 的值___.
13. 一个长方形的周长为24 cm.如果宽增加2 cm,就可成为一个正方形.则这个长方形的宽为 .
14. 公共汽车上原有 名乘客,中途下车一半,后来又上来 名乘客,这时公共汽车上共有乘客 名.
三、解答题:(本题共3个小题,每小题每题6分,共18分)
15.计算:
16.计算:
17.合并同类项:
四、解答题:(本题共3个小题,每小题8分,共24分)
18. 先化简,再求值: ,其中 .
19.如图,当 , 时,求阴影部分的周长和面积.
20.从 的高处有一石头由静止开始自由下落,石头下落的高度 与时间 有面的关系:
时间
高度
(1)写出用时间 表示下落高度 的公式;
(2)当 时,求石头下落的高度.
五、解答题:(本题共10分)
22.为了节约水资源,某市制定了居民用水收费标准.规定每户每月用水不超过8立方米,每立方米收费元;每户每月超过8立方米,超过部分每立方米收费元.
(1)设某户某月用水x立方米,分别写出当0
(2)小杰家2006年12月份用水23立方米,问小杰家12月份应交水费多少元?
一、选择题:(每小题3分,共24分)
;2. D ; ; ;6. B ; ;
二、填空题(每小题3分,共18分)
; ; 006; ; cm ; 14.
三、解答题:(本题共3个小题,每小题每题7分,共21分)
15. =-4
16.
.
17.
四、解答题:(本题共3个小题,每小题9分,共27分)
18.解:原式= ,
当 时, 原式=27
19.解:阴影部分的周长为 ;
阴影部分的面积为 .
20.(1)
(2) 时,
五、解答题:(本题共10分)
21.解:(1)当0
当x>8时,应交水费为[×8+(x-8)]元或()元;
(2)当x=23时,×23-12=(元).
答:小杰家12月份应交水费元.
乐乐媚娘
七年级数学科试卷班级____ 姓名_____ 座号____评分______(说明:全卷80分钟完成,满分100分)一 选择题 (每小题2分,共20分)( ) 1.下列各对数中,互为相反数的是:A. 和2 B. C. D. ( ) 2. 下列式子: 中,整式的个数是:A. 6 B. 5 C. 4 D. 3( ) 3. 一个数的平方和它的倒数相等,则这个数是:A. 1 B. -1 C. ±1 D. ±1和0( ) 4.下列计算正确的是:A. B. C. D. ( ) 5. 数轴上点A,B,C,D对应的有理数都是整数,若点A对应有理数a,点B对应有理数b,且b-2a=7,则数轴上原点应是: A. A 点 B. B 点 C. C 点 D. D点( ) 6.若 =A. B. C. 6 D. ( ) 7.下列说法正确的是:A. B. C. D. ( ) 8.方程1-3y=7的解是:A. B. C. D. 七年级数学 第 1 页 共 1 页( ) 9. 一个多项式加上 则这个多项式是:A. x3+3xy2 B. x3-3xy2 C. x3-6x2y+3xy2 D. x3-6x2y-3x2ya x w -2 3 ( )10.若 b c 表示“ a-b+c” , y z 表示”x-y+z+w”, 则 × 3 -6 表示的运算结果是: A. B. C. D. 二 填空(每小题2分,共20分)11.绝对值不小于1而小于3的整数的和为______;12.- 的倒数的绝对值是______;13.若a、b互为相反数,c、d互为倒数,则2a+3cd+2b=______;14.用科学记数法表示:2007应记为______;15.单项式 的系数是______,次数是______;16. ______;17. ______;18.如果5x+3与-2x+9是互为相反数,则x-2的值是______;19.每件a元的上衣先提价10%,再打九折以后出售的价格是______元/件;20.观察右图并填下表梯形个数 1 2 3 … n图形周长 5 a 8a 11a … 三 计算(每小题4分,共24分)21) 22) 七年级数学 第 2 页 共 1 页23) 24 ) 25) 26) 四. 解答题 (每小题6分,共18分)27.先化简,再求值: 。其中 28.解下列方程并检验。七年级数学 第 3 页 共 1 页五 列方程解应用题(每小题6分,共12分)30.把一批图书分给七年级(11)班的同学阅读,若每人分3本,则剩余20本,若每人分4本,则缺25本,这个班有多少学生?31.小明去文具店买铅笔,店主说:“如果多买一些,可以打八折”,小明算了一下,如果买50支,比原价可以便宜6元,那么每支铅笔的原价是多少元?六 解答题32. 附加题(每小题10分,共20分,不计入总分)1. 有一列数按一定规律排列为1,-3,5,-7,9,…,如果其中三个相邻的数之和为-201,求这三个数?2.计算
四十一度灰
1.初一数学上册期中考试重点总结
图形的初步认识
一、立体图形与平面图形
1、长方体、正方体、球、圆柱、圆锥等都是立体图形。此外棱柱、棱锥也是常见的立体图形。
2、长方形、正方形、三角形、圆等都是平面图形。
3、许多立体图形是由一些平面图形围成的,将它们适当地剪开,就可以展开成平面图形。
二、点和线
1、经过两点有一条直线,并且只有一条直线。
2、两点之间线段最短。
3、点C线段AB分成相等的两条线段AM与MB,点M叫做线段AB的中点。类似的还有线段的三等分点、四等分点等。
4、把线段向一方无限延伸所形成的图形叫做射线。
三、角
1、角是由两条有公共端点的射线组成的图形。
2、绕着端点旋转到角的终边和始边成一条直线,所成的角叫做平角。
3、绕着端点旋转到终边和始边再次重合,所成的角叫做周角。
4、度、分、秒是常用的角的度量单位。
把一个周角360等分,每一份就是一度的角,记作1°;把1度的角60等分,每份叫做1分的角,记作1′;把1分的角60等分,每份叫做1秒的角,记作1″。
四、角的比较
从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线。类似的,还有叫的三等分线。
五、余角和补角
1、如果两个角的和等于90(直角),就说这两个角互为余角。
2、如果两个角的和等于180(平角),就说这两个角互为补角。
3、等角的补角相等。
4、等角的余角相等。
六、相交线
1、定义:两条直线相交,所成的四个角中有一个角是直角,那么这两条直线互相垂直。其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
2、注意:
⑴垂线是一条直线。
⑵具有垂直关系的两条直线所成的4个角都是90。
⑶垂直是相交的特殊情况。
⑷垂直的记法:a⊥b,AB⊥CD。
3、画已知直线的垂线有无数条。
4、过一点有且只有一条直线与已知直线垂直。
5、连接直线外一点与直线上各点的所有线段中,垂线段最短。简单说成:垂线段最短。
6、直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。
7、有一个公共的顶点,有一条公共的边,另外一边互为反向延长线,这样的两个角叫做邻补角。
两条直线相交有4对邻补角。
8、有公共的顶点,角的两边互为反向延长线,这样的两个角叫做对顶角。两条直线相交,有2对对顶角。对顶角相等。
七、平行线
1、在同一平面内,两条直线没有交点,则这两条直线互相平行,记作:a∥b。
2、平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
3、如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
4、判定两条直线平行的方法:
(1)两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。简单说成:同位角相等,两直线平行。
(2)两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。简单说成:内错角相等,两直线平行。
(3)两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。简单说成:同旁内角互补,两直线平行。
5、平行线的性质
(1)两条平行线被第三条直线所截,同位角相等。简单说成:两直线平行,同位角相等。
(2)两条平行线被第三条直线所截,内错角相等。简单说成:两直线平行,内错角相等。
(3)两条平行线被第三条直线所截,同旁内角互补。简单说成:两直线平行,同旁内角互补。
2.初一数学上册期中考试重点总结
函数
1、各个待定系数表示的的意义。
2、熟练掌握各种函数解析式的求法,有几个的待定系数就要几个点值。
3、利用图像求不等式的解集和方程(组)的解,利用图像性质确定增减性。
4、两个变量利用函数模型解实际问题,注意区别方程、函数、不等式模型解决不等领域的问题。
5、利用函数图象进行分类(平行四边形、相似、直角三角形、等腰三角形)以及分类的求解方法。
6、与坐标轴交点坐标一定要会求。面积值的求解方法,距离之和的最小值的求解方法,距离之差值的求解方法。
7、数形结合思想方法的运用,还应注意结合图像性质解题。函数图象与图形结合学会从复杂图形分解为简单图形的方法,图形为图像提供数据或者图像为图形提供数据。
8、自变量的取值范围有:二次根式的被开方数是非负数,分式的分母不为0,0指数底数不为0,其它都是全体实数。
3.初一数学上册期中考试重点总结
【知识点】:
认识直线、线段与射线,会用字母正确读出直线、线段和射线。
直线:可以向两端无限延伸;没有端点。读作:直线AB或直线BA。
线段:不能向两端无限延伸;有两个端点。读作:线段AB或线段BA。
射线:可以向一端无限延伸;有一个端点。读作:射线AB(只有一种读法,从端点读起。)
补充:
画直线。
过一点可画无数条直线;过两个能画一条直线;过三点,如果三点在一条线上,经过三点只能画一条直线,如果这三点不在一条线上,那么经过三点不能画出直线。
明确两点之间的'距离,线段比曲线、折线要短。
直线、射线可以无限延长。因为直线没有端点,射线只有一个端点,所以不可以测量,没有具体的长度。如:直线长4厘米。是错误的。只有线段才能有具体的长度。
4.初一数学上册期中考试重点总结
一、几何图形
几何学:数学中以空间形式为研究对象的分支叫做几何学。
从实物中抽象出的各种图形统称为几何图形。几何图形可分为立体图形和平面图形;各个部分不都在同一平面内的几何图形叫做立体图形,各个部分都在同一平面内的几何图形叫做平面图形。
1、几何图形的投影问题
每一种几何体从不同的方向去看它,可以得到不同的简单平面几何图形。实际上投影所得到的简单平面几何图形是被投影几何体可遮挡视线的部分在平面内所留下的影子。
2、立体图形的展开问题
将立体图形的表面适当剪开。
一、点、线、面、体
1、点、线、面、体的概念点动成线,线动成面,面动成体由平面和曲成围成一个几何体。
2、点、线、面和体之间的关系
(1)点动成线、线动成面、面动成体;
(2)体是由面组成、面与面相交成线、线与线相交成点;
二、线段、射线、直线
1、线段、射线、直线的定义
(1)线段:线段可以近似地看成是一条有两个端点的崩直了的线。线段可以量出长度。(2)射线:将线段向一个方向无限延伸就形成了射线,射线有一个端点。射线无法量出长度。(3)直线:将线段向两个方向无限延伸就形成了直线,直线没有端点。直线无法量出长度。概念剖析:①线段有两个端点,射线有一个端点,直线没有端点;
②“线段可以量出长度”,即线段有明确的长度,“射线和直线都无法量出其长度”,即射线和直线既没有明确的长度,
也没有射线与射线、直线与直线、射线与直线之间的长短比较之说;
③线段只有长短之分,而没有大小之别,射线和直线既没有长短之分,也没有大小之别;
2、线段、射线、直线的表示方法
(1)线段的表示方法有两种:一是用两个端点来表示,二是用一个小写的英文字母来表示。
(2)射线的表示方法只有一种:用端点和射线上的另一个点来表示,端点要写在前面。
(3)直线的表示方法有两种:一是用直线上的两个点来表示,二是用一个小写的英文字母来表示。
概念剖析:①将线段的两个端点位置颠倒,得到的新线段与原来的线段是同一线段,即线段AB与线段BA是同一线段;
②将表示射线的两个点位置颠倒,得到的新射线与原来的射线不是同一射线,即射线AB与射线BA不是同一射线,因为它们的端点和方向不同;
③将表示直线的两个点位置颠倒,得到的新直线与原来的直线是同一直线,即直线AB与直线BA是同一直线;④识别图中线段的条数要把握一点:只要有一个端点不相同,就是不同的线段;⑤识别图中射线的条数要把握两点:端点和方向缺一不可;
5.初一数学上册期中考试重点总结
整式的加减
一、代数式
1、用运算符号把数或表示数的字母连结而成的式子,叫做代数式。单独的一个数或字母也是代数式。
2、用数值代替代数式里的字母,按照代数式里的运算关系计算得出的结果,叫做代数式的值。
二、整式
1、单项式:
(1)由数和字母的乘积组成的代数式叫做单项式。
(2)单项式中的数字因数叫做这个单项式的系数。
(3)一个单项式中,所有字母的指数的和叫做这个单项式的次数。
2、多项式
(1)几个单项式的和,叫做多项式。
(2)每个单项式叫做多项式的项。
(3)不含字母的项叫做常数项。
3、升幂排列与降幂排列
(1)把多项式按x的指数从大到小的顺序排列,叫做降幂排列。
(2)把多项式按x的指数从小到大的顺序排列,叫做升幂排列。
三、整式的加减
1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。
去括号法则:如果括号前是“十”号,把括号和它前面的“+”号去掉,括号里各项都不变符号;如果括号前是“一”号,把括号和它前面的“一”号去掉,括号里各项都改变符号。
2、同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。
合并同类项:
(1)合并同类项的概念:把多项式中的同类项合并成一项叫做合并同类项。
(2)合并同类项的法则:同类项的系数相加,所得结果作为系数,字母和字母的指数不变。
(3)合并同类项步骤:
a.准确的找出同类项。
b.逆用分配律,把同类项的系数加在一起(用小括号),字母和字母的指数不变。
c.写出合并后的结果。
(4)在掌握合并同类项时注意:
a.如果两个同类项的系数互为相反数,合并同类项后,结果为0.
b.不要漏掉不能合并的项。
c.只要不再有同类项,就是结果(可能是单项式,也可能是多项式)。
说明:合并同类项的关键是正确判断同类项。
3、几个整式相加减的一般步骤:
(1)列出代数式:用括号把每个整式括起来,再用加减号连接。
(2)按去括号法则去括号。
(3)合并同类项。
4、代数式求值的一般步骤:
(1)代数式化简
(2)代入计算
(3)对于某些特殊的代数式,可采用“整体代入”进行计算。
A-水灵儿^O^
初一数学第一学期期中考试数学试题题号 一 二 三 16-18 19-20分数 一、选择题:(每个题只有一个正确答案,请把正确的答案填入下面的表格内)题号 1 2 3 4 5 6 7 8 9 10答案 1.|-2|的绝对值的相反数是( ).(A)-2 (B)2 (C)- (D) 2.给出的下列各数中是负数的为( ).(A)-(-4) (B)-|-4| (C)(-2)2 (D)-(-2)3 3.若三个有理数相乘,积大于零,则其中负因数的个数( ).(A)1个 (B)2个 (C)3个 (D)2个或0个负因数4.下列语句中正确的有( )个.(1)任何有理数都有相反数(2)任何有理数都有倒数(3)两个有理数的和一定大于其中任意一个加数(4)两个负有理数,绝对值大的反而小(5)一个数的平方总比它本身大(A)1个 (B)2个 (C)3个 (D)4个5.下列说法正确的是( ).(A)近似数与的精确度相同 (B)近似数3万与30000的精确度相同 (C)近似数×103有两个有效数字 (D)有理数5938精确到十位就是59406.去掉方程3(x-1)-2(x+5)=6中的括号,结果正确的是( ).(A)3x-3-2x+10=6 (B)3x-3-2x-10=6 (C)3x-1-2x+5=6 (D)3x-1-2x-5=67.小明同学把2000元的压岁钱存入银行,年利率为,一年后小明到银行交纳完20%的利息税之后,应领回( ).(A)45元 (B)1636元 (C)2036元 (D)2045元8.如图是一个简单的运算程序:输入x → -3 → ×(-3) → 输出结果要使输出的结果为3,则需输入的x值为( ).(A)3 (B)-3 (C)2 (D) 09.右图是2006年8月份的日历,如图那样,用一个圈竖着圈住3个数,如果被圈住的3个数之和为39,则这三个数中最小的一个数为( ).(A)1 (B)2 (C)6 (D)810.本学期金曼克中学进行了一次数学竞赛,共20道题,其中做对一题得5分,错一题扣2分,不做得0分,一同学做完了全部题目,得了79分,则他做对的题目是( ).(A)15道 (B)16道 (C)17道 (D)18道二、填空题:11.-3与3之间的整数有.在(-1)3、(-1)2、-22、(-2)2四个有理数中,最大数与最小数的和等于.方程2(1-x)=3(x-1)的解是万用科学记数法表示为.有理数a,b在数轴上的位置如下图所示: b a 0 则将a,b,-a,-b按照从小到大的排列顺序为______________________________ 16.已知轮船在逆水中前进的速度为m千米/时,水流的速度为2千米/时,则这轮船在顺水中航行的速度是_______ 17.如果代数式2x-1与3x-5的值互为相反数,那么x=_______ 18.苹果每千克3元,买10千克以上(包括10千克)可按九折优惠,某人买若干千克苹果,共付款元,则他买了________千克苹果.三、解答题:19.计算:(1)-42×( )3-12÷〔2-(-2)2〕(2)(- - +1 )×(-24)20解方程x- =2- 21.一天课外活动时间,七年级8班学生家长问宋润东老师,你班有多少名学生?宋润东老师想了想说,一半学生在学习数学,四分之一学生在学习音乐,七分之一的学生在阅览室读书,还有6名学生在微机室学习微机,你知道金曼克中学七年级8班有多少名学生吗?22.某经营户在蔬菜批发市场上了解到以下信息:蔬菜品种 红辣椒 黄瓜 西红柿 茄子批发价(元/千克) 4 零售价(元/千克) 5 他用116元钱从市场上批发了红辣椒和西红柿共44千克到菜市场去卖,当天卖完,你能算出他赚到了多少钱吗?23.两种移动电话计费方式表 全球通 神州行月租费 50元/月 0本地通话费 元/分 元/分(1)一个月内在本地通话200分和300分,按两种计费方式各需交费多少元?(2)对于某个本地通话时间,会出现两种计费方式的收费一样的情况吗? 回答者: aa780208 - 一级 2010-11-7 12:53
优质考试培训问答知识库