定州人民
通常情况下默认用pearson相关系数,数据分布呈现出不正态时用Spearman相关系数。如使用spssau系统进行分析,可在相关分析下选择pearson系数或Spearman系数,同时结合智能文字分析可快速对数据进行解读。
KingkonG19870210
Pearson相关系数用来衡量两个数据集合是否在一条线上面,它用来衡量定距变量间的线性关系。如衡量国民收入和居民储蓄存款、身高和体重、高中成绩和高考成绩等变量间的线性相关关系。 相关系数的绝对值越大,相关性越强,相关系数越接近于1或-1,相关度越强,相关系数越接近于0,相关度越弱。 通常情况下通过以下取值范围判断变量的相关强度: 相关系数 8-0 极强相关 6-8 强相关 4-6 中等程度相关 2-4 弱相关 0-2 极弱相关或无相关
胖蟹爪爪
1、衡量内容Pearson相关系数是用来衡量两个数据集合是否在一条线上面,用来衡量定距变量间的线性关系。spearman相关系数是衡量两个变量的依赖性的非参数指标。2、计算公式Pearson相关系数:spearman相关系数:3、特点:Pearson相关系数:相关系数的绝对值越大,相关性越强:相关系数越接近于1或-1,相关度越强,相关系数越接近于0,相关度越弱。spearman相关系数:斯皮尔曼相关系数表明X(独立变量)和Y(依赖变量)的相关方向。如果当X增加时,Y趋向于增加,斯皮尔曼相关系数则为正。如果当X增加时,Y趋向于减少,斯皮尔曼相关系数则为负。斯皮尔曼相关系数为零表明当X增加时Y没有任何趋向性。当X和Y越来越接近完全的单调相关时,斯皮尔曼相关系数会在绝对值上增加。当X和Y完全单调相关时,斯皮尔曼相关系数的绝对值为1。参考资料来源:百度百科-Pearson相关系数参考资料来源:百度百科-spearman相关系数
优质职业资格证问答知识库