大美美美女
恒星系或称星系,是宇宙中庞大的星星的“岛屿”,它也是宇宙中最大、最美丽的天体系统之一。到目前为止,人们已在宇宙观测到了约一千亿个星系。银河系也只是一个普通的星系。人们估计恒星系的总数在千亿个以上,它们如同辽阔海洋中星罗棋布的岛屿,故也被称为"宇宙岛"。它们中有的离我们较近,可以清楚地观测到它们的结构;有的非常遥远,目前所知最远的最系离我们有132亿光年,被命名为Abell1835IR1916。中文名恒星系外文名Star system命 名Abell1835IR1916距 离132亿光又 称星系别 称宇宙岛目录1定义2概述3星系的演化4星系的分类▪ 综述▪ 椭圆星系▪ 旋涡星系▪ 不规则星系5银河系6河外星系7宇宙的诞生8恒星系数量▪ 综述▪ 行星广布▪ 生命要素▪ 生命的奥秘▪ 生命易乎1定义编辑恒星系的定义是:由无数本身能发光发热的天体(及恒星)所组成的集合体。恒星系或恒星系称星系,是宇宙中庞大的星星的“岛屿”,它也是宇宙中最大、最美丽的天体系统之一。到目前为止,人们已在宇宙观测到了约十亿个星系。银河系也只是一个普通的星系。人们估计恒星系的总数在千亿个以上,它们如同辽阔海洋中星罗棋布的岛屿,故也被称为"宇宙岛"。它们中有的离我们较近,可以清楚地观测到它们的结构;有的非常遥远,目前所知最远的星系离我们有132亿光年,被命名为Abell1835IR19162概述编辑关于恒星系的发现过程可以追溯到两百多年前。在当时法国天文学家梅西耶 (Messier Charles) 为星云编制的星表中,编号为M31的星云在天文学史上有着重要的地位。初冬的夜晚,熟悉星空的人可以在仙女座内用肉眼找到它——一个模糊的斑点,俗称仙女座大星云。从1885年起,人们就在仙女座大星云里陆陆续续地发现了许多新星,从而推断出仙女座星云不是一团通常的、被动地反射光线的尘埃气体云,而一定是由许许多多恒星构成的系统,而且恒星的数目一定极大,这样才有可能在它距地球848光年的年轻恒星系们中间出现那么多的新星。如果假设这些新星最亮时候的亮度和在银河系中找到的其它新星的亮度是一样的,那么就可以大致推断出仙女座大星云离我们十分遥远,远远超出了我们已知的银河系的范围。但是由于用新星来测定的距离并不很可靠,因此也引起了争议。直到1924年,美国天文学家哈勃用当时世界上最大的2.4米口径的望远镜在仙女座大星云的边缘找到了被称为"量天尺"的造父变星,利用造父变星的光变周期和光度的对应关系才定出仙女座星云的准确距离,证明它确实是在银河系之外,也像银河系一样,是一个巨大、独立的恒星集团。因此,仙女星云应改称为仙女星系。3星系的演化编辑按照宇宙大爆炸理论,第一代星系大概形成于大爆炸发生后十亿年。在宇宙诞生的最初瞬间,有一次原始能量的爆发。随着宇宙的膨胀和冷却,引力开始发挥作用,然后,幼年宇宙进入一个称为“暴涨”的短暂阶段。原始能量分布中的微小涨落随着宇宙的暴涨也从微观尺度急剧放大,从而形成了一些“沟”,星系团就是沿着这些“沟”形成的。随着暴涨的转瞬即逝,宇宙又回复到如今日所见的那样通常的膨胀速率。在宇宙诞生后的第一秒钟,随着宇宙的持续膨胀冷却,在能量较为“稠密”的区域,大量质子、中子和电子从背景能量中凝聚出来。一百秒后,质子和中子开始结合成氦原子核。在不到两分钟的时间内,构成自然界的所恒星系有原子的成分就都产生出来了。大约再经过三十万年,宇宙就已冷却到氢原子核和氦原子核足以俘获电子而形成原子了。这些原子在引力作用下缓慢地聚集成巨大的纤维状的云。不久,星系就在其中形成了。大爆炸发生过后十亿年,氢云和氦云开始在引力作用下集结成团。随着云团的成长,初生的星系即原星系开始形成。那时的宇宙较小,各个原星系之间靠得比较近,因此相互作用很强。于是,在较稀薄较大的云中凝聚出一些较小的云,而其余部分则被邻近的云所吞并。同时,原星系由于氢和氦的不断落入而逐渐增大。原星系的质量变得越大,它们吸引的气体也就越多。一个个云团各自的运动加上它们之间的相互作用,最终使得原星系开始缓慢自转。这些云团在引力的作用下进一步坍缩,一些自转较快的云团形成了盘状;其余的大致成为椭球形。这些原始的星系在获得了足够的物质后,便在其中开始形成恒星。这时的宇宙面貌与今天便已经差不多了。星系成群地聚集在一起,就像我们地球上海洋中的群岛一样镶嵌在宇宙空间浩瀚的气体云中,这样的星系团和星系际气体伸展成纤维状的结构,长度可以达到数亿光年。如此大尺度的星系的群集在广阔的空间呈现为球形。4星系的分类编辑综述宇宙中没有两个星系的形状是完全相同的,每一个星系都有自己独特的外貌。但是由于星系都是在一个有限的条件范围内形成,因此它们有一些共同的特点,这使人们可以对它们进行大体的分类。在多种星系分类系统中,天文学家哈勃于1925年提出的分类系统是应用得最广泛的一种。哈勃根据星系的形态把它们分成三大类:椭圆星系、旋涡星系和不规则星系。椭圆星系椭圆星系分为七种类型,按星系椭圆的扁率从小到大分别用E0-E7表示,最大值7是距太阳最近恒星系任意确定的。该分类法只限于从地球上所见的星系外形,原因是很难确定椭圆星系在空间中的角度。旋涡星系分为两族,一族是中央有棒状结构的棒旋星系,用SB表示;另一种是无棒状结构的旋涡星系,用S表示。这两类星系又分别被细分为三个次型,分别用下标a、b、c表示星系核的大小和旋臂缠绕的松紧程度。不规则星系没有一定的形状,而且含有更多的尘埃和气体,用Irr表示。另有一类用S0表示的透镜型星系,表示介于椭圆星系和旋涡星系之间的过渡阶段的星系。旋涡星系外形呈旋涡结构,有明显的核心,核心呈透镜形,核心球外是一个薄恒星系薄的圆盘,有几条旋臂,在旋涡星系中有一类的核心不是球形,而是棒状,旋臂从棒的两端生出,称为棒旋星系。旋涡星系的代号为S型,棒旋星系的记为SB型。旋涡星系也好,棒旋星系也好一般都在S或SB后面另加a、b、c等英文字母,用来表示旋臂的出松紧程度,a表示最紧,c表示最松。不规则星系外形不规则,没有明显的核和旋臂,没有盘状对称结构或者看不出有旋转对称性的星系,用字母Irr表示。在全天最亮星系中,不规则星系只占5%。 按星系分类法,不规则星系分为Irr I型和Irr II型两类。 I型的是典型的不规则星系, 除具有上述的一般特征外,有的还有隐约可见不甚规则的棒状结构。它们是矮星系,质量为太阳的一亿倍到十亿倍,也有可高达100亿倍太阳质量的。 它们的体积小,长径的幅度为2~9千秒差距。星族成分和Sc型螺旋星系相似:O-B型星、电离氢区、气体和尘埃等年轻的星族I天体占很大比例。 II型的具有无定型的外貌,分辨不出恒星和星团等组成成分,而且往往有明显的尘埃带。 一部分II型不规则黄色双恒星系星系可能是正在爆发或爆发后的星系,另一些则是受伴星系的引力扰动而扭曲了的星系。所以I型和II型不规则星系的起源可能完全不同。宇宙中的大部分大星系都是旋涡星系,其次是椭圆星系,不规则星系占的比较最小。旋涡星系自转得比较快,其盘面中含有大量尘埃和气体,这些物质聚集成能供恒星形成的区域。这些区域发育出含有许多蓝星的旋臂,所以盘面的颜色看上去偏蓝。而在其棒状结构和中央核球上稠密地分布着许多年老的恒星。与旋涡星系相比,椭圆星系自转得非常慢,其结构是均匀而对称的,没有旋臂,尘埃和气体也极少。造成这种局面的原因是早在数十亿年前恒星迅速形成时就已经将椭圆星系中的所有尘埃和气体消耗完了。其结果是造成这些星系中无法诞生新的恒星,因此椭圆星系中包含的全都是老年恒星。5银河系编辑在没有灯光干扰的晴朗夜晚,如果天空足够黑,你可以看到在天空中有一条弥漫的光带。这条光带就是我们置身其内而侧视银河系时所看到的它布满恒星的圆面——银盘。银河系内有约两千恒星系多亿颗恒星,只是由于距离太远而无法用肉眼辩认出来。由于星光与星际尘埃气体混合在一起,因此看起来就像一条烟雾笼罩着的光带。银河系的中心位于人马座附近。银河系是一个中型恒星系,它的银盘直径约为十二万光年。它的银盘内含有大量的星际尘埃和气体云,聚集成了颜色偏红的恒星形成区域,从而不断地给星系的旋臂补充炽热的年轻蓝星,组成了许多疏散星团或称银河星团。已知的这类疏散星团约有一千两百多个。银盘四周包围着很大的银晕,银晕中散布着恒星和主要由老年恒星组成的球状星团。6河外星系编辑它们是与银河系类似的天体系统,距离都超出了银河系的范围,因此称它们为“河外星系”。仙女座星系就是位于仙女座的一个河外星系。河外星系与银河系一样,也是由大量的恒星、星团、星云和星际物质组成。我们观测到的星系有10亿个之多。7宇宙的诞生编辑我们观察到的宇宙,其边界大约有100多亿光年。它由众多的星系所组成。地球是太阳系的一颗普通行星,而太阳系是银河系中一颗普通恒星。我们所观察到恒星、行星、慧星、星系等是怎么产生的呢?宇宙学说认为,我们所观察到的宇宙,在其孕育的初期,集中于一个很小、温度极高、密度极大的奇点。在150亿年到200亿年前,奇点发生大爆炸,从此开始了我们所在的宇宙的诞生史。宇宙原始大爆炸后0.01秒,宇宙的温度大约为1000亿度。物质存在的主要恒星系形式是电子、光子、中微子。以后,物质迅速扩散,温度迅速降低。大爆炸后1秒钟,下降到100亿度。大爆炸后14秒,温度约30亿度。35秒后,为3亿度,化学元素开始形成。温度不断下降,原子不断形成。宇宙间弥漫着气体云。他们在引力的作用下,形成恒星系统,恒星系统又经过漫长的演化,成为今天的宇宙。物质现象的总和。广义上指无限多样、永恒发展的物质世界,狭义上指一定时代观测所及的最大天体系统。后者往往称作可观测宇宙,相当于天文学中的“总星系”。2003年2月份,美国国家航空航天局曾向全世界公布他们有关宇宙年龄的研究成果。根据其公布的资料显示,宇宙年龄应该为137亿岁。2003年11月份,国际天体物理学研究小组宣称,宇宙的确切年龄应该是141亿岁。地球的形成大约是距今45亿年。词源考察在中国古籍中最早使用宇宙这个词的是《庄子·齐物论》。“宇”的含义包括各个方向,如东西南北的一切地点。战国末期的尸佼说:“四方上下曰宇,往古来今曰宙。”“宇”指空间,“宙”指时间,“宇宙”就是时间和空间的统一。后来“宇宙”一词便被用来指整个客观实在世界。与宇宙相当的概念有“天地”、“乾坤”、“六合”等,但这些概念仅指宇宙的空间方面。《管子》的“宙合”一词,“宙”指时间,“合”(即“六合”)指空间,与“宇宙”概念最接近。在西方,宇宙这个词在英语中叫cosmos,在俄语中叫кocMoc,在德语中叫kosmos,在法语中叫cosmos。它们都源自希腊语的κoσμoζ,古希腊人认为宇宙的创生乃是从浑沌中产生出秩序来,κoσμoζ其原意就是秩序。但在英语中更经常用来表示“宇宙”的词是universe。此词与universitas有关。在中世纪,人们把沿着同一方向朝同一目标共同行动的一群人称为universitas。在最广泛的意义上,universitas又指一切现成的东西所构成的统一整体,那就是universe,即宇宙。universe和cosmos常常表示相同的意义,所不同的是,前者强调的是物质现象的总和,而后者则强调整体宇宙的结构或构造。宇宙观念的发展宇宙结构观念的发展远古时代,人们对宇宙结构的认识处于十分幼稚的状态,他们通常按照自己的生活环境对宇宙的构造作了幼稚的推测。在中国西周时期,生活在华夏大地上的人们提出的早期盖天说认为,天穹像一口锅,倒扣在平坦的大地上;后来又发展为后期盖天说,认为大地的形状也是拱形的。公元前7世纪,巴比伦人认为,天和地都是拱形的,大地被海洋所环绕,而其中央恒星系则是高山。古埃及人把宇宙想象成以天为盒盖、大地为盒底的大盒子,大地的中央则是尼罗河。古印度人想象圆盘形的大地负在几只大象上,而象则站在巨大的龟背上,公元前7世纪末,古希腊的泰勒斯认为,大地是浮在水面上的巨大圆盘,上面笼罩着拱形的天穹。目前所知最远的恒星系离我们有近两百亿光年。8恒星系数量编辑综述宇宙中有无数个恒星系,每一个恒星系包含着无数颗恒星。那么,有多少颗恒星拥有自己的行星呢?在这些行星中又有多少具备构成生命所必需的元素及生命存在所必需的环境呢?行星广布生命并不是行星间共有的,而是行星形成时自然而然产生的。1995年,在环绕佩加西—51号星的轨道上发现了一个巨大星体,之后又发现了24颗围绕不同恒星运转的大行星,其中有些比木恒星系星还大几倍。近些年来,已有12个潜在的行星系被找到。它们的存在说明行星在宇宙间并不稀有。“哈勃”望远镜对猎户座星云的观测结果有力地支持了以上理论。从猎户座的星云图上,可以看到圆盘状的尘埃云环绕着年轻的恒星。可以肯定地说,在这孕育行星的摇蓝中,新行星的形成正如火如荼。生命要素人类已经掌握了许多行星系的丰富资料,因而可以设想,在已知的行星中,一定会有体积大小与地球相似的行星存在。但是,这些行星是否拥有“生命要素”呢?正如我们所知,生命要存在,就要有形成生命以及维持生命所必需的化合物,而且还得有特定的环境使它们可以组合,从而为生命起源奠定基础。起初,在宇宙间只存在氢和氦。形成生命所必需的化合物中的重元素,如碳、氮、磷、氧以及硫都是在恒星不断产生和毁灭的循环中产生的。这一循环或许以百万到10亿年为一个周期。只有经历若干代恒星的生死循环之后,才有可能形成拥有生命的行星。环顾银河系和整个宇宙,可以发现生命所需的各种元素最初是均匀分布的,已知星体内到处不停地发生着复杂的有机化学反应。由双原子形成的化合物多种多样,随着分子中原子种类的不断增加,碳、氢、氧及氮形成的化合物在有机化合物中逐渐占据了支配地位,以致在所有原子种类大于或等于7的化合物中不再有其他元素存在。结构更加复杂的含碳化合物包括从氨基酸(如甘氨酸)到多环芳香族碳氢化合物这类耐高温、耐腐蚀的复杂化合物。在早期的地球上,留有慧星、小行星与它猛烈碰撞产生的痕迹。生命的奥秘有机化合物具有光学异构体,这种构型被称为左旋和右旋。偏手性表示只有左旋或只有右旋构型的现象。生命的核心秘密之一在于组成它的化学物质具有偏手性,产生具有立体结构特异性的有机分子是地球生命的特征。左旋的氨基酸分子和右旋的糖分子是生命物质的基础。在科学界中,对于这种生命特性的起源仍未有定论。偏手性是在生命起源时就存在抑或是由进化选择而来的呢?多年来对陨石恒星系的研究表明,它们富有多种有机化合物,这对于探索地球生命起源具有重要意义。两位科学家对一块莫企逊陨石的氨基酸进行了左旋与右旋的比例测定,发现左旋氨基酸分子偏多。一般来说,通常的测定结果可能受地球上的污染物影响,但这次测定的是来自地球以外、未被地球生命利用过的氨基酸。这表明当地球形成时,在它临近区域内的有机化合物中已存在着左旋构型多于右旋构型的现象,以后在地球上,氨基酸分子慢慢演变为只有左旋构型。生命易乎在地球上,生命的形成是非常迅速的。地球形成后的激烈震荡大约在39亿年前才结束。只有当这种震荡减弱之后,地球上才有可能形成海洋,并一直保有它。4亿年过去后,地球上出现了微生物群落。化学家们认为,构成生命所必需的复杂化合物是如此稳定,在几千万年内形成生命一定不是难事。当你抬头欣赏夜晚的天空时,你所看到的星星距离地球大多在80光年以内。大多数恒星燃烧得太亮或是运行得太快,使得液态水无法在它的行星表面长期存在。除去那些即生即灭的恒星,在80光年半径内还有近1000颗稳定的星体,如果在类似地球的星体上存在生命的可能性达到1/1000,那么我们就一定会有“芳邻”。让我们努力去寻找并拜访他们的家园吧!新浪科技讯 北京消息,据国外媒体报道,美国的天文学家称,他们利用美国宇航局的“Spitzer”太空望远镜,在距球848光年处发现了一个非常年轻的小型恒星系。这对于揭开宇宙的形成奥秘具有重要参考意义。美国哈佛-史密松天体物理中心科学家罗伯特-古特姆斯说:“我们首次利用美国宇航局的Spitzer太空望远镜观测到了这个年轻的恒星群的图像,它们真是太令人惊异了。由于这些恒星完全被云层中厚厚的尘埃所遮掩,因此我们观测不到它们的可见光波长。”鉴于这个新发现的星团位于巨蛇座南部,研究人员将其取名为“巨蛇座南”。在“Spitzer”太空望远镜拍摄到的照片中,“巨蛇座南”恒星看上去像是绿色、黄色和橙色的斑点,位于贯穿图片中部的一条黑色的上方。这条黑线是狭长而浓密的宇宙尘埃和气,它正不断收缩,以形成恒星。跟雨滴的形成原理一样,恒星也是在厚厚的宇宙云层崩塌后才形成的。绿色代表热氢气。当高速气流从年轻的恒星中喷射而出,并与周围云层中的冷气猛烈碰撞后,就会形成这种可被“Spitzer”太空望远镜观测到的氢气“指纹”。背景中的红色丝状物是被称为“多环芳烃”的有机分子,一旦邻近的恒星形成区W40发出恒星辐射,就会激发出“多环芳烃”。在地球上,“多环芳烃”存在于烧焦的烧烤架和乌黑的汽车排气中。多年来,天文学家们一直在就恒星大家庭中各成员之间的相互关系问题争论不休。一些天文学家们怀疑,恒星们可能是“兄弟姐妹关系”,同时由同一气体和尘埃团“父母”所生。然而,另一些科学家们则怀疑,这个恒星家庭成员之间可能是“收养关系”,也就是说,恒星们是在某一时期一小批一小批诞生的,最后这些小恒星群“相互结合”形成了一个大块的恒星团。不久,科学家们将开展一项名为“古德带调查”的研究工作,对距离地球1600光年以内的所有恒星形成区进行分析,以揭开恒星家庭成员关系之谜。
东北小茬子521
恒星分类学是一门极为繁琐和艰深的学科,但对于一般业余爱好者来说,与其去做无能力做到的罗尽不如从光谱型和赫罗图入,循着这一条路走,带着兴趣去逐渐深入地了解,不仅会促使自己学到一些物理学知识,同时也在“知其所以然”的层面上了解到了恒星的大致分类。
一般地说,我们可以选择恒星演化过程:
原恒星,包括被称为“失败的恒星”的棕矮星及更小的但大于最大行星的一些亚恒星
主星序(从矮星到蓝巨星及蓝超巨星,包括不在赫罗图中的WR型超热巨质量的恒星)
晚期恒星(黄巨星、橙巨星、红巨星,还包括红超巨星及红超超巨星)
死亡恒星(黑矮星、白矮星、中子星、传说中的夸克星、黑洞)
然后在演化各阶段的恒星中再分类(上一条在括弧中粗略地做了一些),比如在主星序阶段中的矮星中,有蓝矮星这种莫名其妙的热星,还有正常的红矮星、橙矮星、黄矮星(如太阳)......这些要打全并做简单的说明那会是一项艰苦的打字工作,呵呵。
好吧,让我们从这儿开始吧,祝你“旅途”顺利:
光谱型:
赫罗图:
有什么不清楚的可追问(包括以后通过其它方式)
送你一张很大的赫罗图(点击放大后再点击还可放大),没事时可慢慢研究
舞动的骷髅
依据恒星与其他星球的关系以及运动情况,划分为以下类型。
1、孤星型恒星
孤星型恒星在宇宙空间孤立存在,不在星系中,没有与其它星球形成关系。该类型恒星在宇宙中一般呈直线运动。其形态为球形和非球形。
2、主星型恒星
这类恒星捕获小质量天体形成绕其旋转的星系,恒星位于中心是主星,其它小质量天体如行星彗星等绕其旋转是从星。在宇宙中一般呈直线运动。形态为球形和非球形。
3、从属型恒星
这类恒星绕大质量天体进行转动,没有小质量天体绕其旋转。该类型恒星存在公转和自转,其运动轨道为圆形、近圆形和椭圆形,其形态为球形或近球形。
4、伴星型恒星
这类恒星与大质量体星球形成相互绕转,形成伴星关系。伴星间围绕共同质点公转,存在自转和公转,其形态为球形或近球形。
5、混合型恒星
这类恒星绕大质量天体进行转动,同时有小质量天体绕其旋转或有伴星。存在公转和自转,其形态为球形或近球形。如太阳。
6、依据恒星成因或起源
划分为碎块型恒星、凝聚型恒星、捕获型恒星。
7、依据恒星结构
划分为简单型恒星即非圈层状结构恒星、复杂型恒星即圈层状结构恒星。
8、依据温度
划分为低温型恒星、中低温型恒星、中温型恒星、中高温型恒星、高温型恒星。
9、依据寿命
划分为短命型恒星、长命型恒星。
扩展资料:
1、化学组成:
与在地面实验室进行光谱分析一样,我们对恒星的光谱也可以进行分析,借以确定恒星大气中形成各种谱线的元素的含量,当然情况要比地面上一般光谱分析复杂得多。多年来的实测结果表明,正常恒星大气的化学组成与太阳大气差不多。
按质量计算,氢最多,氦次之,其余按含量依次大致是氧、碳、氮、氖、硅、镁、铁、硫等。但也有一部分恒星大气的化学组成与太阳大气不同。
例如沃尔夫-拉叶星,就有含碳丰富和含氮丰富之分(即有碳序和氮序之分)在金属线星和A型特殊星中,若干金属元素和超铀元素的谱线显得特别强。但是,这能否归结为某些元素含量较多,还是一个问题。
2、物理特性:
观测发现,有些恒星的光度、光谱和磁场等物理特性都随时间的推移发生周期的、半规则的或无规则的变化。这种恒星叫作变星。
变星分为两大类:一类是由于几个天体间的几何位置发生变化或恒星自身的几何形状特殊等原因而造成的几何变星;一类是由于恒星自身内部的物理过程而造成的物理变星。
参考资料来源:百度百科——恒星
卡娃依叻
其实宇宙正在循环我们就在循环当中只是宇宙是上下循环就像是六道轮回一样每一个个体都是圆的而每一个个体都在循环着不同的时间不同的时代然而某一个时空出现重叠就有可能在这个时空出现不可能存在的东西应该叫时空偏差吧
春天里的秋天88
恒星分类有好多种,国际上一般按温度分:OBAFGKM等几类这个是部分的解释和帮助记忆分类的
恒星的最初由气体星际云在重力作用下慢慢汇聚形成,最初的形态叫“原恒星(protostellar)”。经过不长的一段时间(太阳约经过了5千万年)就形成了“主序星(main-sequence)”,这个过程一般很长(太阳约是98亿年,质量越小的恒星这个生命期越长,质量在0.6倍太阳以下的几乎与宇宙同龄,这也是大部分恒星的主要生命过程,类似于人类的青年)。随着恒星(0.6到2倍太阳质量)内部核反应的进行,辐射带走了能量,恒星表面膨胀,表面温度下降,颜色变红,进入叫“亚巨星(subgiant)”的阶段。当内部核表面的温度上升到足以点燃那里的氢的时候,由于表面氢的燃烧,恒星一下子(爆发)又亮了起来,恒星变成了“红巨星(red giant)”(我把这个叫做回光返照),因恒星内部金属丰度的不同红巨星的颜色会有不同,“含金量”高的星会偏蓝一些。恒星内核的温度继续上升使得点燃了氦,恒星成了"red clump star",当内部的氦烧完了,恒星就进入了“asympotitic giant branch”阶段,开始烧表面的氦核氢。这时的恒星体积已经扩大了很多,表面松散,成为“stellar superwind”而离开恒星,恒星最后只剩下一个裸露的核,这就是著名的“白矮星(white dwarf)”。形成白矮星的恒星质量一般在2到6至8倍的太阳质量。最后恒星的宿命有三个方式结束,质量在40倍太阳质量以上的恒星表面质量掉得太快来不及不成为超红巨星就直接成了裸露的燃烧核,叫“blue wolf-rayet star”;质量在10到40倍太阳质量的恒星向内坍塌成了“中子星(neutron star)”或者“黑洞(black hole)”;质量在8到10倍太阳质量的恒星会在所有元素烧成铁之前爆发,形成中子星或者完全粉碎消失。双星是和单星相对的,双星是很普遍的情况,天文学家甚至说:所有恒星中的百分之一百五十是双星。变星了解的不多,最有名的应该是“造父变星(cepheid wariables)”了,主序星上的分支。
油炸妹子
质量(或亮度)从小到大: 棕矮星——比宇宙只晚产生一点点的恒星,现在才有可能演变成棕矮星,极难发现,几乎不发光,低温。 红矮星——质量在0.8个太阳以下的恒星,温度相对较低,亮度低,寿命极长,几乎与宇宙同期(目前发现最小的红矮星OGLE-TR-122b仅比木星大16%,当然质量是木星的92倍)。 白矮星——低亮度,个子小的可怜(正常情况下木星比白矮星还大得多),发蓝偏白的光,但温度、密度极高,可达1亿摄氏度,密度可达1t/cm^3,比地球大点的白矮星(比如直径约20000km的天狼星B),其质量和太阳差不多,当然质量也不会超过太阳×1.44。 次矮星——恒星演变晚期,分冷的次矮星和热(极端水平分支)次矮星,冷的低光度,因为缺乏比氢重的燃料;热的比白矮星亮,可能是两颗白矮星相融的结果。 矮星——比如太阳,是主序星(年轻恒星)较弱的一种,个子矮小的恒星,光度较弱,性质可用太阳作参考(偷懒~~)。 次巨星——光度在主序星和巨星之间。是准备演化成巨星的恒星,是核心的氢融合将要终止或已经终止的恒星,温度会有所下降,又黄逐渐变成红。 巨星——光度在次巨星和超巨星之间。又分冷(红)巨星,蓝(热)巨星,橙(罕见)巨星,由于它们质量是太阳×1.4~4,恒星衰老时变大的体积约是太阳10~100倍的恒星,故叫做巨星。 亮巨星——光度在巨星和超巨星之间。比如猎户座δ。 超巨星——也分红、黄、蓝三类,其亮度是一个比一个牛X,光度I级左右,很大,体积是太阳的数十万甚至百万倍,但只是虚有其表,温度低,若有一个超级大水盆,你会发现它们漂在水上。 特超巨星——最亮的一种老年恒星,质量是太阳的100~150倍,温度也很不等,在3500K至35000K之间,由于内部的极不稳定性,所以几乎所有特超巨星的亮度会不断变化,VY大犬座这颗特超巨星直径至少是太阳的1800倍质量约是太阳的40倍,但也是虚张声势,密度很低。 走向死亡的最终演化:除了棕矮星、黑矮星之流,还有非常极端的中子星(分脉冲星和磁星两种)和最违反常理的黑洞。 脉冲星——这种星体不断放出脉冲,能够检测,所以取名为脉冲星。高质量恒星爆炸后,会留下一个致密的内核,引力极大,其密度是1cm^3=美国的汽车总重,可压穿地球,他们的直径能小到12英里左右,移动速度极快,在每小时12万公里,自转速度可达每秒1000圈。 磁星——有趣、致命的星球。只有VY这种恒星才有资格变成磁星。磁星磁场很强,通过衰变发出X射线,是短命鬼。如果太阳系的边缘(奥尔特云)有一颗磁星,那么我们的电视就全得玩玩,如果在月球的位置有颗磁星,那么地球上的东西统统会被消磁,比如游戏存档被删,银行卡没钱,如果磁星距离我们只有1000KM,那么这无异于在全世界投放数万颗像《cod6》中的EMP电磁爆弹,所有的金属物品全部玩完,所有生物死亡,因为身体没有了金属元素,再近一点,地球就会被撕成碎片。 黑洞——找不到合理解释的玩意儿。只有特超巨星有可能形成黑洞。最不可见的天体,如果黑洞就在你眼前都不会发现。其质量违背所有人类下的定律,近乎无限大。大小不明,只知道银河系中间可能有个大小比太阳大,质量是太阳数百万倍的黑洞。目前发现的最大黑洞是类星体中心发现的,质量是太阳的25亿倍,密度不解释,1cm^3=地球。黑洞是个陌生的科学领域,不知大小,不知质量,不知性质,只知道它吞噬一切,并发出伽马射线暴。
优质英语培训问答知识库