小丫夏夏
我们把形如z=a+bi(a,b均为实数)的数称为复数,其中a称为实部,b称为虚部,i称为虚数单位。当z的虚部等于零时,常称z为实数;
当z的虚部不等于零时,实部等于零时,常称z为纯虚数。复数域是实数域的代数闭包,即任何复系数多项式在复数域中总有根。
1799年,维塞尔首次发表了对复数的正确几何解释,他同时用解析的方法表示了未知线段的长度和方向(类似于向量)。
事实上,早在1787年,他已经详细说明了怎样给出在一个平面上的方向的解析表示。在1799年的论文里,他定义了平面内有向线段(复数)的加法与乘法,并给出了√-1的一个几何解释。
而阿尔冈则创造性的讨论了复数的几何表示,对有向线段的积做了几何解释,并且用这种几何思想证明了三角,几何及代数的一些定理。
1830年,高斯第一次发表了有关复数几何表示的论文,并详细论述了用直角坐标系上复平面上的点表示复数a+bi,使复数有了立足之地,人们才最终承认了复数。