Lindahellokitty
Linear regression analysis is a statistical method used to determine the impact oile variable (or a group of variables) has on another variable. It provides the best, linear, unbiased estimate of the relationship between the dependent variable (Y) and one or more independent variables (X or X's). Linear regression Is often used by management accountants to analyze cost behavior (that is, determine the fixed atid variable portions of a total cost), or to forecast future events such as sales levels. The assumptions underlying linear regresslOn are: Linearity一Therelationship between the dependent variable and the independent variable(s) is linear. Stationary -The process underlying the relationship is stationary. This assumption is often called the constant process assumpt1on. The differences between the actual values of thedependent variable and its predicted values (the error or residual terms) are normally distributed with a mean of zero and a constant standard deviation. In other words, the dependent variable is not correlated with itself; i.e., it is not auto-correlated or serial-correlated. The independent variables (X's) in multiple regression analysisare independent of each other. There is no multi-co linearity. Regression analysis creates a linear equation based oIì the relationship between a dependent variable and one ormdre independent variables. The dependent variable (Y) is the value being forecast, such as sales or total costs. The independent variables (X) are the factors that are assumed to inf1uence or drive the variations seen in the dependent variable. It is assumed that the relationship between the dependent variable and the independent variable remains constant (hence the linear relationship). There are two main types of regression analysis: simple regression analysis, which uses only one independent variable; and multiple regression analysis, which uses two or more independent variables. Regression analysis equations systematically reduce estimation errors, and are therefore also called least square regression. Regression analysis fits a line (the regression line) through data points-a line that minimizes the difference between the line (prediction) and the data point (actual). The statistical formula that the regression is based on produces the least amount of error between these two items.
360U233840390
regression一般是统计学的回归回归,研究一个随机变量Y对另一个(X)或一组(X1,X2,…,Xk)变量的相依关系的统计分析方法。研究一 个或多个随机变量Y1 ,Y2 ,…,Yi与另一些变量X1、X2,…,Xk之间的关系的统计方法。又称多重回归分析。通常称Y1,Y2,…,Yi为因变量,X1、X2,…,Xk为自变量。回归分析是一类数学模型,特别当因变量和自变量为线性关系时,它是一种特殊的线性模型。最简单的情形是一个自变量和一个因变量,且它们大体上有线性关系,这叫一元线性回归,即模型为Y=a+bX+ε,这里X是自变量,Y是因变量,ε是随机误差,通常假定随机误差的均值为0,方差为σ^2(σ^2大于0)σ^2与X的值无关。若进一步假定随机误差遵从正态分布,就叫做正态线性模型。一般的情形,若有k个自变量和一个因变量,因变量的值可以分解为两部分:一部分是由自变量的影响,即表示为自变量的函数,其中函数形式已知,但含一些未知参数;另一部分是由于其他未被考虑的因素和随机性的影响,即随机误差。当函数形式为未知参数的线性函数时,称线性回归分析模型;当函数形式为未知参数的非线性函数时,称为非线性回归分析模型。当自变量的个数大于1时称为多元回归,当因变量个数大于1时称为多重回归。anova是方差分析方差是各个数据与平均数之差的平方的平均数。在概率论和数理统计中,方差(英文Variance)用来度量随机变量和其数学期望(即均值)之间的偏离程度。在许多实际问题中,研究随机变量和均值之间的偏离程度有着很重要的意义。方差分析(Analysis of Variance,简称ANOVA),又称“变异数分析”或“F检验”,是R.A.Fisher发明的,用于两个及两个以上样本均数差别的显著性检验。 由于各种因素的影响,研究所得的数据呈现波动状。造成波动的原因可分成两类,一是不可控的随机因素,另一是研究中施加的对结果形成影响的可控因素。
尼古丁00144
回归分析(regression analysis)是确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法。
运用十分广泛,回归分析按照涉及的变量的多少,分为一元回归和多元回归分析;按照因变量的多少,可分为简单回归分析和多重回归分析;按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析。如果在回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。如果回归分析中包括两个或两个以上的自变量,且自变量之间存在线性相关,则称为多重线性回归分析。
扩展资料:
回归分析步骤
1、确定变量
明确预测的具体目标,也就确定了因变量。如预测具体目标是下一年度的销售量,那么销售量Y就是因变量。通过市场调查和查阅资料,寻找与预测目标的相关影响因素,即自变量,并从中选出主要的影响因素。
2、建立预测模型
依据自变量和因变量的历史统计资料进行计算,在此基础上建立回归分析方程,即回归分析预测模型。
3、进行相关分析
回归分析是对具有因果关系的影响因素(自变量)和预测对象(因变量)所进行的数理统计分析处理。只有当自变量与因变量确实存在某种关系时,建立的回归方程才有意义。因此,作为自变量的因素与作为因变量的预测对象是否有关,相关程度如何,以及判断这种相关程度的把握性多大,就成为进行回归分析必须要解决的问题。进行相关分析,一般要求出相关关系,以相关系数的大小来判断自变量和因变量的相关的程度。
4、计算预测误差
回归预测模型是否可用于实际预测,取决于对回归预测模型的检验和对预测误差的计算。回归方程只有通过各种检验,且预测误差较小,才能将回归方程作为预测模型进行预测。
5、确定预测值
利用回归预测模型计算预测值,并对预测值进行综合分析,确定最后的预测值。
参考资料来源:百度百科-回归分析