Shiro白小白
cnn主要适合处理图片,比如给图片分类、给图片自动打标签、无人驾驶等。一般2D的cnn用来处理图片,3D的cnn用来处理视频。近来也有人开始用于nlp自然语言处理 (参考阅读) 。cnn卷积神经网络是对传统神经网络的改进,改进点包括: 1,提出卷积层convolutional layers layer和池化层max-pooling layer(subsampling layer),替代全连层fully connected layer。 2,将层之间的全连接改成非全连接,从而降低运算量,也降低过拟合的发生。 3,卷积层用的激活函数是ReLU或者tanh。 cnn的原理详细介绍参见 (colah's blog) cnn架构图 , 架构详细分析 ,cnn的层有三类:Convolutional Layer, Pooling Layer和Fully-Connected Layer。其典型架构为[INPUT - CONV - RELU - POOL - FC]。 如何理解卷积的概念,可以参照 (这儿) 。更详细更深入的解释卷积参照 Chris Olah’s post on the topic 。卷积可以用来作图片模糊处理、探测图片边缘。 也叫softmax layer,最后一层通常选用softmax激活函数。 cnn可以用于nlp自然语言处理,包括文本分类、情感分析、垃圾邮件监测、主题分类、关系抽取、信息抽取、信息推荐、等。cnn for nlp的原理参见 Understanding Convolutional Neural Networks for NLP 。 使用tensorflow实现一个文本分类cnn模型。具体参见 Implementing a CNN for Text Classification in TensorFlow 。 tensorflow实现cnn实例 (github源码) cnn用于文本分类实例 (github源码) sennchi
南得珍贵
DNN(深度神经网络),是深度学习的基础。DNN可以理解为有很多隐藏层的神经网络。这个很多其实也没有什么度量标准, 多层神经网络和深度神经网络DNN其实也是指的一个东西,当然,DNN有时也叫做多层感知机(Multi-Layer perceptron,MLP)。从DNN按不同层的位置划分,DNN内部的神经网络层可以分为三类,输入层,隐藏层和输出层,如下图示例,一般来说第一层是输出层,最后一层是输出层,而中间的层数都是隐藏层。CNN(卷积神经网络),是一种前馈型的神经网络,目前深度学习技术领域中非常具有代表性的神经网络之一。CNN在大型图像处理方面有出色的表现,目前已经被大范围使用到图像分类、定位等领域中。相比于其他神经网络结构,卷积神经网络需要的参数相对较少,使的其能够广泛应用。RNN(循环神经网络),一类用于处理序列数据的神经网络,RNN最大的不同之处就是在层之间的神经元之间也建立的权连接。从广义上来说,DNN被认为包含了CNN、RNN这些具体的变种形式。在实际应用中,深度神经网络DNN融合了多种已知的结构,包含卷积层或LSTM单元,特指全连接的神经元结构,并不包含卷积单元或时间上的关联。
优质英语培训问答知识库