• 回答数

    8

  • 浏览数

    207

茶痴吃茶去
首页 > 英语培训 > 化工英语文献翻译

8个回答 默认排序
  • 默认排序
  • 按时间排序

恶狼追月

已采纳

Synthesis of propylene glycol methyl ether over amine modifiedporous silica by ultrasonic techniqueXuehong Zhang a,b, Wenyu Zhang a,b, Junping Li a, Ning Zhao a, Wei Wei a, Yuhan Sun a,*a State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, Chinab Graduate School of the Chinese Academy of Sciences, Beijing 100039, ChinaReceived 16 May 2006; received in revised form 10 July 2006; accepted 12 July 2006Available online 21 July 2006AbstractAmine modified porous silica were synthesized by ultrasonic technique under mild conditions. The samples, which were characterizedby BET, 29Si NMR spectra, element analysis and indicator dye adsorption, exhibited promising catalytic properties towards the synthesisof propylene glycol methyl ether from methanol and propylene oxide. They had both high yields and reusability in the reaction, indicatingthat ultrasonic technique was effective for the preparation of organically modified silica catalysts. Furthermore, the possible reactionmechanism was proposed for the synthesis of propylene glycol methyl ether over such type of catalysts.2006 Elsevier B.V. All rights reserved.Keywords: Modified porous silica; Ultrasonic technique; Propylene oxide; Methanol; Propylene glycol methyl ether1. IntroductionThe attempt to heterogenize homogeneous catalyst asalternatives to more traditional reagents and catalysts hasbeen one area of research that has seen increasing interest.Much recent work was focused on the preparation oforganically modified solid bases to heterogenize homogeneousamine catalyst. The modification process was generallyoperated by stirring, heating, refluxing, etc. [1–3].Recently, the interest in synthetic sonochemistry reactionshas grown [4]. The ultrasonic technique has been widelyapplied in two-phase systems due to its advantages, suchas high accuracy and rapidity. Most of these reactions haveinvolved a heterogeneous chemical interaction [5]. In thearea of porous materials functionalized by organic groups,however, only limited applications of ultrasound have beenexplored [6,7]. In the present work, an alternative syntheticroute for the formation of amine modified silica was developedby using ultrasonic energy, which can produce chemicalmodifications on solids by cavitation phenomenon [8].The amines modified silica with ‘‘single site’’ base strengthwere promising catalysts for a variety of reactions [9].The synthesis of glycol ether over base catalysts is animportant kind of reaction in organic synthesis. There areseveral methods for the synthesis of propylene glycol ether[10,11]. Among them the propylene oxide method is mostlyconvenient and industrial feasible. Generally, propyleneoxide reacts with fatty alcohol via acid or base catalysis.The catalysts used in this process include earlier homogenousbase or acid (NaOH, alcoholic sodium and BF3), latersolid acid and base. However, few studies have reported theuse of amine modified silica as catalysts for the synthesis ofpropylene glycol methyl ether, though inorganic solid basiccatalysts have performed good activity in the reaction. Theimmobilization of the amino functions on a mesoporoussupport, which were with ‘‘single site’’ base strength, couldafford an achieving this kind of reaction.In the present work, amine functionalized silica catalysts,including NH2/SiO2, NH(CH2)2NH2/SiO2, TAPM/SiO2 (2,4,6-triaminopyrimidine/SiO2) and TBD/SiO2(1,5,7-triazabicyclo[4,4,0]dec-5-ene/SiO2), were preparedwith 3-aminopropyltrimethoxysilane (APTMS), N-[3-(tri-methoxysilyl)propyl]ethylenediamine (EDPTMS) and 3-chloropropyltrimethoxysilane (CPTMS) as the couplingagents by ultrasonic technique under mild experimentalconditions. At the same time, in order to confirm the meritsof ultrasonic technique, NH2/SiO2 was also prepared bythe conventional method in order to understand the effectivebehaviour of ultrasonic technique in the preparationof functionalized porous silica. In addition, the catalyticactivity of the organic solid base catalysts was evaluatedby the synthesis of propylene glycol methyl ether frommethanol and propylene oxide. Furthermore, the possiblereaction mechanism was proposed for the synthesis of propyleneglycol methyl ether over such type of catalysts.2. Experimental2.1. Synthesis of catalytic materialsThe amine functionalized silica catalysts could beachieved in two ways under similar conditions as reportedearlier [7].Aminopropylsilyl-functionalized SiO2 was prepared asfollows: 10.0 g SiO2 was preheated for 12 h at 473 K invacuum to remove all adsorbed moisture but surfaceOH-groups, and than cooled down to room temperaturein vacuum and transferred into a 250 mL conical flask.After mixed with 40.0 mL cyclohexane and 5.0 mLAPTMS, the mixture in conical flask was put into the ultrasonicbath for 2 h (Sheshin, Japan, operating power 60 W)at ambient temperature. The catalyst was then obtained byextracting with toluene in a soxhlet extractor over a periodof 24 h and drying at 333 K in vacuum. The same methodwas used for the preparation of NH(CH2)2NH2/SiO2.TBD/SiO2 was prepared by two steps: silica was firstlymodified by 3-chloropropyltrimethoxysilane via the samemethod as that of aminopropylsilyl-functionalized SiO2,and chloropropylsilyl-functionalized SiO2 was then reactedwith TBD (1.0 g) in cyclohexane (40.0 mL). The resultantwas treated by ultrasonic vibration for 1 h. Afterwards,the catalyst was obtained by extracting with toluene in aSoxhlet extractor over a period of 24 h and drying at333 K in vacuum. The same method was used for the preparationof TAPM/SiO2.2.2. CharacterizationThe content of carbon, nitrogen, and hydrogen in all thesamples was determined using a Vario EL analyzer. Thespecific surface area, total pore volume and average porediameter were measured by N2 adsorption–desorptionmethod on a Micromeritics ASAP-2000 instrument (Norcross,GA). The surface areas were calculated by BETmethod, and the pore size distribution was obtained byapplying the BJH pore analysis to the nitrogen adsorption–desorption isotherm. 29Si NMR spectra were recordedon a Bruker MSL-400 spectrometer. The base strength ofsamples was detected by hammett indicators.2.3. Catalytic testThe catalytic properties were measured in a 75 ml batchreactor with mol ratio of methanol and propylene oxidebeing 5:1. After running at 403 K for 10 h under magneticstirring, the reactor was cooled down to room temperature.The product was then filtered and analyzed by a gas chromatographwith a flame ionization detector after centrifugalseparation from the catalysts. The catalysts werewashed with solvent and used for recycling test.3. Results and discussion3.1. Modification of porous silica with amine groupsThe content of carbon, nitrogen, and hydrogen inamine-free porous silica and all the modified samples werecarried out by elemental analysis. Wtorg. and Norg.% wereobtained from N%, C% and H% (see Table 1). The resultsshowed that there were no carbon and nitrogen in theamine-free porous silica. As a result, carbon and nitrogenin modified samples ought to be from the organosilanes.The element analysis showed that Norg.% of the graftedorganic groups achieved by conventional methods knownfrom the literature [12] was 1.13 mmol/g, which was farlower than that of the sample prepared by ultrasonic technique(2.00 mmol/g) (see Table 1). This should be due tothe application of ultrasonic energy to solids and liquids,which could provide the changes including cavitation(bubble formation in a liquid) and chemical reaction (accelerationof chemical reaction), etc. [13]. As a result, processesincluding particle size modification, cleaning ofsurfaces or the formation of fresh ones [14,15] could beobtained in heterogeneous media at a solid liquid interface.As to the organic modification of porous silica, cavitationphenomena brought by ultrasound could speed up theliquid transferring velocity in the hole of porous materialsand the liquid–solid interface. As a result, the liquidorganosilanes could be well contacted with silanol groupson the inner wall of the porous silica to react with themin a short time, while stiring could not reach such effect.Therefore, the modification process finished simply andspeedily by ultrasound.The 29Si NMR spectra in solid state indicated that thecovalent bond formed between silylant agents and silanolgroups on the silica surface (see Fig. 1). Two resonancesat 109 and 99 ppm could be attributed to 29Si nucleihaving four Si–O–Si linkages (Q4) and 29Si nuclei havingthree Si–O–Si linkages and one OH (Q3) [16], respectively.The resonances at 58 and 67 ppm were assignedto RSi(OSi)(OH)2 and RSi(OSi)3, respectively [17], whichillustrated the successful organo functionalization of poroussilica by the organic groups via covalent bonds. C/Nvalue (molar ratio) could also reflect the degree of graftingreaction between silanol groups and organosilanes [18].NH2/SiO2, NH(CH2)2NH2/SiO2 and TBD/SiO2 showedthe C/N = 3–3.5, 2.5–3.0 and 3.3–3.6, respectively. Theresults also suggested the anchorage of amine groups bySi–O–Si bonds. This agreed with the result of the 29SiNMR spectra.3.2. Structure and basicity of samplesFig. 2 displays N2 adsorption isotherms for the samplesstudied. The functionalized samples displayed type IV isothermswith clear hysteresis loops associated with capillarycondensation. This indicated that the materials remainedmesoporous before and after functionalization and themodification by various organosilanes hardly changed theisotherm type. The BET surface area and pore volumeshowed a gradual reduction as the Norg.% of graftedorganic groups increased (see Table 2). This could beattributed to the presence of functional groups. A part ofamino groups grafted onto the microporous also led to adecrease in the BET surface area. The effect of the organicgroups on the pore diameter of the samples was slight forthe samples NH2/SiO2 and NH(CH2)2NH2/SiO2. But asfor the sample TBD/SiO2 and TAPM/ SiO2, perhaps dueto the big framework of (CH2)3/TAPM and (CH2)3/TBD groups, the average pore diameters of the samplesdecreased to 7.90 and 8.82 nm. However, the average porediameter was not decreased seriously due to the low Norg.%values of the samples.The base strength H of a solid surface is defined as theability of the surface to convert an adsorbed electricallyneutral acid into its conjugate base. When an electricallyneutral acid indicator is adsorbed on a solid base from anonpolar solution, the color of the acid indicator is changedto that of its conjugate base, provided that the solidhas the necessary base strength to impart electron pairsto the acid [19]. A solid with a large positive HH hasstrong basic sites. Grafting with different functional groupscould result in different base strengths. As shown in Table3, TBD/SiO2 had the highest base strength of H 15.0,while NH2/SiO2 and NH(CH2)2NH2/SiO2 only had thebasicity of H 9.3 and 9.3 < H < 15.0, respectively.Compared to the other modified samples, TAPM/SiO2had weakest basicity of H < 7.2. Thus, the basic strengthof the samples was in the order of TBD/SiO2 > NH(CH2)2NH2/SiO2 > NH2/SiO2 > TAPM/SiO2.3.3. Catalytic performanceThe catalytic activity was tested in the synthesis of propyleneglycol methyl ether from methanol and propyleneoxide (see Table 3). As shown in Table 3, PO conversionand isomer selectivity (the ratio of 1-methoxy-2-propanol/total propylene glycol methyl ether) reached 27.3 and72.3% without the presented catalysts, respectively. Amongthe catalysts, the amine-free porous silica showed the lowcatalytic activity due to the weak acid strength of the surfacesilanol groups. For anchored amino groupsNH(CH2)2NH2/SiO2 and NH2/SiO2 catalysts were foundto be more active and selective than other catalysts to 1-methoxy-2-propanol after 10 h of reaction. TAPM/SiO2catalyst had low propylene oxide conversion (89.0%) withthe isomer selectivity of 66.6%. TBD/SiO2,NH(CH2)2NH2/SiO2 and NH2/SiO2 catalysts all showedhigh propylene oxide conversion (>94%), but different isomerisomerselectivity. NH(CH2)2NH2/SiO2 and NH2/SiO2 withweaker base strength had higher isomer selectivity(>82%), while TBD/SiO2 with moderate base strengthshowed lower isomer selectivity (73.7%). As for solid basecatalysts, catalysts with moderate base strength shouldhave good isomer selectivity [20]. The lower isomer selectivityof TBD/SiO2 could be due to the big framework ofTBD.The catalysts were easily recovered by filtration, andsubjected to utilization for seven cycles with constant conversionof propylene oxide >89% and the utilization formany recycles hardly changed the isomer selectivity under403 K (see Table 4), indicating that amine groups graftedonto silica surface were stable under the experimental conditions.The reusability of other samples was similar to thatof NH2/SiO2.3.4. Possible mechanismInorganic solid base catalysts have been extensively usedfor the synthesis of propylene glycol methyl ether frommethanol and propylene oxide [31], in which, the methoxideion and proton was absorbed on acidic and basic siteson the catalyst surface, respectively, and then the methoxideion attacked the C(1) position. In the present case, however,the samples used for the reaction were characteristicof single site, i.e., the catalyst with unique basic site similarto the homogeneous base. Because there was no Lewisacidic site on the catalysts, the mechanism should be differentfrom those involving bifunctional catalysts. The plausiblemechanism of 1-methoxy-2-propanol formation onNH2/SiO2 is illustrated in Scheme 1. There was H-bondsformation between methanol and amine groups in path 1.In path 2, because of the sterically hindered CH3 of PO, theO atom in methanol attacked the C(1) position and protonwas absorbed on the basic sites of the catalysts, and thenC(1)–O band cracked, followed by pick up the proton toform 1-methoxy-2-propanol.It seems reasonable to consider that the higher activityof NH(CH2)2NH2/SiO2, NH2/SiO2 and TBD/SiO2 wasdue to the appropriate base strength, which could not onlyform H-bond but also crack it easily. TAPM/SiO2 withvery weak base strength could only form more unstableH-bond. Thus, the activity of TAPM/SiO2 was lower thanthe other samples. On condition that such mechanism isreasonable, the big framework of the organic groups probablycould affect the attacking position of the O atom inmethanol. As a result, TBD of the big framework led tolower isomer selectivity. Thus, both appropriate basestrength and simple framework of the organic groups wereimportant for the high conversion and good selectivity to1-methoxy-2-propanol.4. ConclusionsThe results presented above led to the following conclusions:(1) the efficient ultrasonic technique could successfullyprepare the amine functionalized porous silicacatalysts, (2) the characterization indicated that the aminegroups were grafted onto the silica surface by covalentbond, (3) appropriate base strength and simple frameworkof the organic groups were important for the high conversionand good selectivity to 1-methoxy-2-propanol, (4) thecatalysts could be recovered by filtration and were subjectedto utilization for many cycles with constant activity.

化工英语文献翻译

261 评论(11)

雪野在宁

你好~ 翻译如下~可能会有出入吧~人们已经认识到,关于薄膜金属薄膜metaloxide支持与相应的吸附性能的差异展示散装metaloxides。修改后的属性休息1电荷交换与吸附物种和金属/金属氧化接口。这一现象最初预测的金原子吸附在氧化镁/钼(100),后来证实实验通过扫描隧道显微镜在Au原子测量支持氧化镁/银(100)。类似的影响预测并确认二氧化氮吸附在氧化镁/银(100),并后来被证明申请不同类型的氧化物。这部小说的催化性能的超薄氧化镁薄膜银(100)源自认为O2是表面活性事实。在图2中,电子态密度预计到氧气州(态密度)是显示的O2/MgO和O2/MgO/Ag。案件对氧化镁吸附,2π*状态是半满的分子是一个三联。这种情况是不同的氧吸附在氧化镁/银(100),其中变为负电荷的分子(成形一偶极)。这显然是观察到的态密度在一开始空2π*国家已经提出以下费米能级。的收费该分子是贝德尔证实了分析。对于O2/MgO /银(100),氧气是收取-0.72位置,氧化镁0.54 e和银的0.18大肠杆菌在图2中,我们还展示了电荷密度差图[ΔF)架F(O2/MgO/Ag) - F(下氧) - F(下氧化镁/银)]。 ΔF清楚揭示了电荷的2π*国家利益。在氧化第一CO分子的过程中,该系统保留了双合自旋态;在过渡态,自旋密度转移对氧原子的表面上仍然存在。多余的电荷这个原子计算为0.98电子。氧的吸附在银后,支持氧化镁的活化还观察到的结构特性。面向对象的键长(表1)为0.08较长的氧化镁/银相比,唯一的氧化物。的CO键长计算为在氧化镁和氧化镁类似/股份公司。这是有关的二氧化碳吸附只有微弱的支持影响的事实。在第一个过渡态,面向对象(CO)的键长被拉伸0.12(0.04)Å。的CO值可以比在Pt(111),它的情况下计算为1.16。在O2的吸附在氧化镁/银(100)诱导在氧化膜结构明显松弛。在rumpling2%的氧化镁/银系统,而这是-17%的O2/MgO /股份公司。在rumpling变化是由于镁离子的协调在表面层的阴离子O2和降低O型抗原的距离在接口。平均O型抗原的距离缩短至2.65到2.46。大型结构松弛是一致的其他吸附以前的结果(见,例如,15克)。

222 评论(15)

小琳仔仔

翻译后:合成丙二醇甲醚超过胺改性多孔二氧化硅超声技术学张甲,乙,温榆河张甲,乙,平利,赵宁,魏伟,孙予罕, * 一个国家重点实验室,煤转化研究所,煤化学,中国科学院,太原030001 ,中国b研究生院,中国科学院,北京100039 ,中国收到2006年5月16日接见了在修订的表格2006年7月10日;接受, 2006年7月12日网上提供2006年7月21日摘要胺改性多孔二氧化硅合成了超声波技术温和条件下。样本中,其中的特点由打赌, 29 Si核磁共振光谱,元素分析和指标吸附染料,展示了光明的催化性能,对合成丙二醇甲醚由甲醇和环氧丙烷。他们都高良品率和可重用性反应,这表明超声波技术是有效的为编写有机改性二氧化硅催化剂。此外,可能的反应机制提出了合成丙二醇甲醚对这种类型的催化剂。 2006年Elsevier公司乙诉,保留所有权利。 关键词:改性多孔硅;超声波技术;环氧丙烷;甲醇;丙二醇甲醚1 。导言试图把heterogenize均相催化剂替代更传统的试剂和催化剂得到的一个领域的研究,看到了越来越大的兴趣。 许多近期的工作重点是编制有机固体基地,以heterogenize均相胺类催化剂。改造过程中普遍经营搅拌,加热,回流等[ 1-3 ] 。 最近,有兴趣的合成声化学反应成长[ 4 ] 。超声波技术已被广泛适用于两相系统由于其自身的优势,如由于精度高,速度快。大多数的这些反应都涉及非均相化学相互作用[ 5 ] 。在面积多孔材料官能化有机群体, 然而,只有有限的应用超声已探索[ 6,7 ] 。在目前的工作,另一种合成航线,形成胺改性炭黑开发用超声波能量,能产生化学修改对固体汽蚀现象[ 8 ] 。 该胺改性二氧化硅''单网站''基地实力分别有前途的催化剂为各种各样的反应[ 9 ] 。 合成乙二醇醚超过基准催化剂是一个重要的一种反应,在有机合成中。有几种方法合成丙二醇甲醚[ 10,11 ] 。其中环氧丙烷的方法大多是方便和工业可行的。一般来说,丙烯氧化反应脂肪醇经酸或基地的催化作用。 用催化剂,在这个过程中,包括先前同质基地或酸(氢氧化钠,酒类钠和三氟化硼) ,后来固体酸和基地。然而,很少有研究报道使用胺改性氧化硅为催化剂合成丙二醇甲醚,虽然无机坚实基础催化剂表现良好的活性,在反应。该固定氨基酸职能上孔支持,而这是与''单网站''基地实力,可负担不起实现这种反应。 在当前的工作中,胺官能二氧化硅催化剂包括nh2/sio2 ,中NH ( Ⅱ ) 2nh2/sio2 , tapm / 二氧化硅( 2,4,6 - triaminopyrimidine /二氧化硅)和tbd/sio2 ( 1,5,7 - triazabicyclo [ 4,4,0 ] dec-5-ene/sio2 ) ,准备3 -氨丙基三甲氧基硅烷( aptms ) , N -二[ 3 -(三methoxysilyl )丙基]乙二胺( edptms )和3个- chloropropyltrimethoxysilane ( cptms )作为耦合代理商,由超声波技术在温和的实验条件。在同一时间,以证实优点超声波技术, nh2/sio2还编写了传统的方法,以了解有效行为超声波技术在编写功能化多孔二氧化硅。此外,催化活性有机固体碱催化剂的评价由合成丙二醇甲醚从甲醇和环氧丙烷。此外,尽可能反应机理,提出了为合成丙烯乙二醇甲醚对这种类型的催化剂。 2 。实验2.1 。合成催化材料该胺官能二氧化硅催化剂,可取得了两方面的类似条件下,作为报早些时候[ 7 ] 。 aminopropylsilyl官能二氧化硅编写如下: 10.0克二氧化硅预热为12小时,在473 K的真空,以消除所有吸附水分,但地表哦小组,并比冷却下来,以室温在真空和转入250毫升三角烧瓶。 混合后,与40.0毫升环己烷和5.0毫升aptms ,混合在三角烧瓶投入超声波浴2小时( sheshin ,日本,经营权60瓦特) 在常温下。该催化剂,然后得到了提取与甲苯在索氏提取器近一个时期以来24 h和干燥,在333 K的真空。同样的方法已用于编制中NH ( Ⅱ ) 2nh2/sio2 。 tbd/sio2编写了两个步骤:二氧化硅是第一改性3 - chloropropyltrimethoxysilane途经同一法,因为这对aminopropylsilyl官能二氧化硅和chloropropylsilyl官能二氧化硅当时反应与tbd ( 1.0 g )在环己烷( 40.0毫升) 。由此治理后,由超声波振动1每小时随后, 催化剂,获得了提取与甲苯在索氏提取器近一个时期以来, 24小时和干燥333 K的真空。同样的方法已用于编制对tapm/sio2 。 2.2 。表征内容的碳,氮和氢在所有样品的测定用vario下午分析器。该比表面积,总孔容和平均孔隙直径测量N2吸附-解吸方法一micromeritics ASAP的2000文书(的Norcross 加文) 。表面地区进行了计算打赌方法,以及孔径分布得到运用bjh孔隙分析,以氮气吸附- 脱附等温线。 29 Si核磁共振谱录就bruker平均海面- 400分光计。该基地的实力样品检测哈米特指标。 2.3 。催化试验催化性能测试在75毫升一批反应堆与摩尔比的甲醇和环氧丙烷正在5:1 。运行后,在403 K的10小时下磁悲壮,反应堆冷却下来到室温。 该产品,然后再过滤和分析,由气相色谱仪与火焰离子化检测后,离心脱离催化剂。催化剂洗涤溶剂,并用于回收试验。 3 。结果与讨论3.1 。改性多孔二氧化硅与胺群体内容的碳,氮和氢无胺多孔硅和所有改性样品进行了元素分析。 wtorg 。和Norg 。 % 获得由n % , c %和H % (见表1 ) 。结果这有没有碳和氮在无胺多孔二氧化硅。因此,碳和氮在改性样品中,必须从有机硅烷。 元素分析表明, Norg的。 %的嫁接有机群体达到常规方法称为从文献[ 12 ] 1.13 mmol / g上升,这是迄今为止低于该样本编制的超声波技术( 2.00 mmol / g上升) (见表1 ) 。这应该是由于应用超声波能量,以固体和液体, 可提供变化,包括汽蚀(气泡形成,在一个流动性)和化学反应(加速度化学反应) ,等等[ 13 ] 。作为一个结果,过程包括颗粒大小修饰,清洗表面或形成新鲜[ 14,15 ] ,可获得了在非均匀介质中,在固液界面。 至于把有机改性的多孔硅,汽蚀现象所带来的超声波能加快液体转移速度在孔多孔材料与液固界面。因此,采用液体有机硅烷可以很好地接触silanol群体对内壁的多孔二氧化硅反应与他们在很短的时间,搅拌,而不能达到这种效果。 因此,改造过程中完成了简单迅速超声。 在29 Si核磁共振光谱在固体状态表示共价键之间形成silylant代理人和silanol 集团对二氧化硅表面(见图1 ) 。两个共振在109和99 ppm的原因可能是29 Si原子核四泗O型硅联系(第四季)和29 Si原子核经三泗O型硅的联系和一个哦(第三季) [ 16 ] ,分别为。 该共振,在58和67 ppm的被分配以RSI公司( OSI )以( OH ) 2和的RSI ( OSI )以3 ,分别为[ 17 ] ,其中说明成功的有机官能团的多孔二氧化硅有机群体通过共价键。的C / N 值(摩尔比) ,也可以在一定程度上反映嫁接反应silanol群体和有机硅烷[ 18 ] 。 nh2/sio2 ,中NH ( Ⅱ ) 2nh2/sio2和tbd/sio2显示的C / N = 3-3.5 , 2.5-3.0和3月3日至3月6日,分别。该结果,同时也表明锚碇胺群体四O型硅债券。这个同意的结果,该29sinmr谱。 3.2 。结构和碱度的样本图。二显示器N2吸附等温线为样本研究。该官能样品展示IV型等温线具有明确的滞后环与毛细管冷凝水气。这表明,在材料仍孔之前和之后官能和改性各种有机硅烷难以改变等温式。比表面积和孔容表明逐渐减少为易。 %嫁接有机群体的增加(见表2 ) 。这可能是归功于在场的功能群。一部分氨基接枝微孔,也引发了一场跌幅在比表面积。效果有机集团对孔径的样品为轻度样本nh2/sio2和NH ( Ⅱ ) 2nh2/sio2 。但正如为样本tbd/sio2和tapm /二氧化硅,也许是因为以大框架内( Ⅱ ) 3/tapm和( Ⅱ ) 3 / tbd群体,其平均孔径的样本下降到7.90和8.82 nm左右。然而,平均孔隙直径为没有减少,严重由于低Norg的。 % 值的样本。 该基地强度H类固体表面定义为有能力的表面转换成一种吸附电中性酸纳入其共轭基地。当一个电中性酸指标是吸附了坚实的基础,从非极性溶液,色条酸指标是改变现在说的,其共轭基地,只要扎实拥有必要的基础力量,传授电子对向酸[ 19 ] 。了坚实的一大正面有个HH 强大的基本地盘。嫁接不同功能组别可能会导致不同的基本优势。如表3 , tbd/sio2有最高碱强度的H 15.0 , 而nh2/sio2和NH ( Ⅱ ) 2nh2/sio2不仅有碱度的H 9.3和9.3 < h < 15.0 ,分别。 其它城市相比,改性样品, tapm/sio2 曾最弱碱度的H < 7.2 。因此,基本实力该样本是在常规的tbd / 二氧化硅>中NH ( Ⅱ ) 2nh2/sio2 > nh2/sio2 > tapm/sio2 。 3.3 。催化性能催化活性测试,在合成丙烯乙二醇甲醚由甲醇和丙烯氧化氮(见表3 ) 。如表3所示,宝转换和同分异构体的选择性(比例为1 -甲氧基-2 -丙醇/ 总丙二醇甲醚)达到27.3和72.3 % ,但无提交催化剂,分别。其中催化剂,无胺多孔二氧化硅显示低催化活性由于弱酸强度的表面silanol群体。为锚定氨基酸组中NH ( Ⅱ ) 2nh2/sio2和nh2/sio2催化剂被发现以更积极和选择性比其他催化剂,以1 - 甲氧基-2 -丙醇后, 10小时的反应。 tapm/sio2 催化剂低环氧丙烷转化率( 89.0 % ) 该异构体的选择性为66.6 % 。 tbd/sio2 , 中NH ( Ⅱ ) 2nh2/sio2和nh2/sio2催化剂都显示高环氧丙烷转化率( " > 94 % ) ,但不同的异构体异构体选择性。中NH ( Ⅱ ) 2nh2/sio2和nh2/sio2与弱基强度较高,同分异构体的选择性( " > 82 % ) ,而tbd/sio2中度基地实力表明较低的异构体选择性( 73.7 % ) 。至于奠定了坚实的基础催化剂,催化剂与温和的基地实力应具有良好的异构体选择性[ 20 ] 。较低的异构体的选择性对tbd/sio2可能是由于大范围内tbd 。 该催化剂易于回收过滤,并受到利用7个周期不断转换环氧丙烷> 89 %和综合利用许多回收难以改变异构体选择性下403的K (见表4 ) ,说明胺集团嫁接到二氧化硅的表面稳定,在实验条件下。 可重用的其他样品类似这对nh2/sio2 。 3.4 。可能的机制无机固体碱催化剂已广泛使用为合成丙二醇甲醚从甲醇和环氧丙烷[ 31 ] ,其中,甲醇离子和质子吸收,对酸和基本地盘对催化剂的表面,分别,然后甲醇离子攻击的C ( 1 )的位置。在本案件中,但是, 该样本用于该反应的特点单一网站,即该催化剂具有独特的场址基本相似向同质基地。因为没有刘易斯酸性网站上的催化剂,该机制应有所不同从那些涉及双功能催化剂。收益机理1 -甲氧基-2 -丙醇形成nh2/sio2体现在计划1 。还有的H -债券形成以甲醇及胺组在道路1.in路径2 ,因为该阻甲基蒲, 氧原子在甲醇攻击的C ( 1 )的位置和质子被吸收就基本地盘的催化剂,然后( 1 )邻带侦破,然后拿起质子以表1 -甲氧基-2 -丙醇。 似乎可以合理地认为,较高的活性中NH ( Ⅱ ) 2nh2/sio2 , nh2/sio2和tbd/sio2是由于合适的基地实力,而不能只形成氢键,而且裂缝的,它很容易。 tapm/sio2与十分薄弱,基础实力,只能形成更多的不稳定氢键。因此,活性tapm/sio2低于其他样本。条件是这种机制合理的,大框架内的有机群体,大概可能会影响攻击的立场与氧原子在甲醇。因此, tbd的大框架内,导致较低的异构体的选择性。因此,既恰当基地实力和简单的框架的有机群体对于高转化率和选择性好,以1 -甲氧基-2 -丙醇。 4 。结论结果提交以上可以得出以下结论: ( 1 )高效率的超声波技术可以成功准备胺官能多孔二氧化硅催化剂, ( 2 )表征表示胺团体接枝二氧化硅表面共价债券, ( 3 )适当的基础实力和简单框架的有机群体重要的是转化率高选择性好,以1 -甲氧基-2 -丙醇, ( 4 ) 催化剂可以回收过滤和遭受以综合利用为许多个周期不断的活动。

260 评论(8)

麻辣宝宝彩

你的文献篇幅浩瀚,百度只允许上传这么长,余下部分到我的贴吧去拷贝吧!明天见!利用超声技术改性的氨基多孔硅合成丙二醇甲醚摘要在温和条件下采用超声技术合成了氨基改性多孔硅。用BET、29Si核磁共振谱、元素分析和指示剂染料吸附等方法表征的样品在用甲醇和环氧丙烷合成丙二醇甲醚的反应中呈现出令人鼓舞的催化特性。 它们在反应中有高的产率和循环使用性,表明超声技术在有机改性硅催化剂的制备方面是有效的。而且我们还推测了用此类催化剂合成丙二醇甲醚的可能的反应机理。关键词:改性多孔硅; 超声技术;环氧丙烷;甲醇;丙二醇甲醚。 前言对均相催化剂的异质化的努力来代替传统试剂和催化剂已经成为一个兴趣越来越浓厚的研究领域。大量的工作集中在有机改性的固体碱的制备方面来异质化均相氨基催化剂。改性的过程一般是振荡、加热、回流等[1–3]。 最近,声化学合成反应的兴趣有所增加[4]。超声技术因其优点例如高精度和快度已被广泛用于两相反应体系中。多数此类反应涉及非均相化学反应[5]。 然而在多孔材料的有机功能化领域,超声技术仅得到有限的应用 [6,7]。当前工作中,我们用超声能开发了一个合成氨基改性硅的替代合成路线,超声能可以产生空化现象从而对固体进行化学改性[8]。带有‘‘单一碱基位点’’的氨基改性硅是各种反应中令人鼓舞的催化剂[9]。利用碱性催化剂合成丙二醇醚类是重要的有机合成反应。 已经有过几个关于丙二醇甲醚合成方法的报道[10,11]。其中环氧丙烷法最方便、最适合工业应用。一般来说,环氧丙烷通过酸性或碱性催化剂和脂肪醇反应。这个过程中使用的催化剂包括早期的均相酸催化剂或均相碱催化剂(氢氧化钠、乙醇钠和三氟化硼)以及后来的固体酸催化剂和碱催化剂。 然而,很少有报道氨基改性硅用作丙二醇甲醚合成的催化剂,尽管有机固体碱性催化剂 在该反应中表现出良好的活性。氨基官能团接枝到多孔支持体上会形成带有单一碱性位点的催化剂,可以加速这类反应。当前的工作中,氨基官能团化的硅催化剂,包括NH2/SiO2、NH(CH2)2NH2/SiO2、TAPM/SiO2(化合物翻译略)和TBD/SiO2(化合物翻译略),用APTMS、EDPTMS和CPTMS作为偶联剂在温和的实验条件下用超声技术制备。同时,为了证实超声技术的优点,我们也用传统方法制备了NH2/SiO2,以便理解超声技术在官能团改性的多孔硅的制备中的有效性。此外,有机固体碱催化剂的催化活性用甲醇+环氧丙烷=丙二醇甲醚这样的合成反应来估计。并且,我们还推测了在此类催化剂上合成丙二醇甲醚可能的反应机理。2. 实验2.1. 催化材料的合成氨基化硅催化剂可用以前报道的在相似的条件下用两种方法获得 [7]。氨基丙基硅官能团化的SiO2用下述方法制备:10.0 g 二氧化硅在473 K下真空预热12 h除去除表面OH-官能团之外的所有吸附的水分,然后在真空下冷却到室温并转移到250 mL圆底烧瓶中。和40.0 mL 环己烷及5.0 mL APTMS混合后,圆底烧瓶中的混合物放入超声浴中在室温下保持2 h (日本Sheshin公司制造,操作功率60 W)。然后在索氏提取器中用甲苯提取24 h并在333 K温度下真空干燥获得催化剂。NH(CH2)2NH2/SiO2制备采用同样的方法。TBD/SiO2用两步法制备:采用和氨基丙基硅官能团化的SiO2相同的改性方法,首先用3-氯丙基三甲氧基硅烷对硅改性,然后3-氯丙基三甲氧基硅烷改性的SiO2和 TBD (1.0 g)在环己烷 (40.0 mL)中反应。反应产物超声震动1 h。之后,在索氏提取器中用甲苯提取24 h并在333 K温度下真空干燥获得催化剂。TAPM/SiO2制备采用同样的方法。2.2. 表征所有样品中碳、氮和氢的含量使用Vario EL元素分析仪测定。特异性表面积、总孔容和平均孔径用N2吸附-解吸法在Micromeritics ASAP-2000孔隙表面积测定仪(Norcross,GA)上测定。表面积用BET法计算,孔径大小分布用BJH孔径分析法和其他孔径的氮吸附-解吸进行比较获得。用Bruker MSL-400光谱仪记录29Si核磁共振谱。样品的碱基堆积力用 hammett指示剂检测。2.3. 催化性能测试催化性能在75 ml批量反应容器中测定,使用的反应物甲醇和环氧丙烷的物质的量之比为5:1。在403 K的温度下磁力搅拌反应10 h后, 反应器冷却到室温。反应产物经过滤并用离心法和催化剂分离后,用配置氢焰离子化检测器的气相色谱进行分析。催化剂用溶剂洗涤后用于回收率测试。3. 结果与讨论3.1. 多孔硅的氨基官能团改性带游离氨基的多孔硅和所有改性样品中碳、氮和氢的百分含量用元素分析测定(表1)。结果表明,带游离氨基的多孔硅中不含碳、氮。改性材料中的碳、氮来自有机硅。元素分析表明,用文献描述的传统方法[12]制备的接枝有机官能团的有机官能团含量是1.13 mmol/g,远低于超声技术制备的样品中的含量(2. 00 mmol/g) (表1)。这应归功于超声能对固体和液体的作用,因为超声能够提供一些物化性质的变化,包括空化(液体中形成小泡)和化学反应 (化学反应的加速)等[13]。结果是,粒子大小改性、新制备催化剂的表面净化 [14,15] 这些过程可以通过在固液界面上引入非均相介质来完成。对于多孔硅的有机改性,超声引起的空化现象能加速液体在多孔材料和液固界面的小孔中的传递速率。结果是,液体有机硅烷类可以和多孔硅内壁上的硅醇官能团良好接触并短时间内与它们反应,而振荡不能达到这种效果。因此,用超声完成催化剂的改性过程简单、快捷。固体催化剂的29Si核磁共振谱分析表明硅烷基化试剂和硅表面上的硅醇官能团之间形成共价键(图1)。109和99 ppm两个共振频段可分别使29Si原子核带上4个Si–O–Si连接(Q4)及3个Si–O–Si连接和一个羟基(Q3) [16]。58和67 ppm两个共振频段分别对RSi(OSi)(OH)2和RSi(OSi)3的形成起作用 [17],这表明用有机官能团通过共价键连接可成功地使多孔硅有机官能团化。C/N价(分子比)也能反映硅醇官能团和有机硅烷之间的接枝反应进行的程度[18]。NH2/SiO2、NH(CH2)2NH2/SiO2和 TBD/SiO2的C/N价分别是3–3.5、2.5–3.0 和3.3–3.6。 The results also suggested the anchorage of 氨基官能团 by Si–O–Si 键。这和29Si核磁共振的结果是一致的。3.2.催化剂样品的结构和碱度图2是其他样品和供试样品N2吸收比较图。在毛细管吸附作用下,呈现典型IV型的官能团化催化剂样品比其他催化剂样品有清晰的滞后回线。这表明用不同有机硅烷对材料进行官能团化和改性的前后这些材料保留了多孔结构。BET 表面积和孔溶剂随着接枝有机官能团的百分比的增加逐渐下降(表2)。这可能是由于官能团的存在。接枝到微孔硅上的部分氨基官能团也能导致BET表面积的缩小。有机官能团对NH2/SiO2和NH(CH2)2NH2/SiO2的孔径的影响很弱。但对于TBD/SiO2和TAPM/ SiO2,或许是由于(CH2)3/TAPM和(CH2)3/TBD官能团具有大的分子骨架,催化剂样品的平均孔径分别减小到 7.90 和8.82 nm。然而平均孔径由于样品具有较低的有机物百分含量而并未严重下降。固体表面的碱度定义为样品表面把它吸附的电中性的酸转化成其共轭碱的活性。当一种电中性的酸指示剂吸附在非极性溶液中的固体碱上时,颜色变成了其共轭碱的颜色,表明固体有足够的碱度把电子对转移到酸上[19]。 带有大量阳性HH的固体具有强大的碱性位点。与不同官能团接枝键合可形成不同碱度。如表3所示,TBD/SiO2碱性最高(PH值= 15.0),而NH2/SiO2和NH(CH2)2NH2/SiO2 的碱性较低,PH值分别是9.3和9.3-15.0之间。和其他改性样品相比,TAPM/SiO2碱性最弱,PH值< 7.2。 因此,样品的碱性强度顺序是: TBD/SiO2 > NH(CH2)2NH2/SiO2 > NH2/SiO2 > TAPM/SiO2。3.3. 催化性能用甲醇和环氧丙烷合成丙二醇甲醚来测试催化活性(表3)。如表 3所示,不使用催化剂时PO转化率和异构体选择性 (1-甲氧基-2-丙醇和丙二醇甲醚总量之比)分别达到 27.3 和72.3%。 在使用的催化剂中,带有游离氨基的多孔硅因其表面硅醇官能团的弱酸性而表现出较低的催化活性。对于锚定的氨基官能团,NH(CH2)2NH2/SiO2和NH2/SiO2 的对于反应10 h后1-甲氧基-2-丙醇的催化合成活性和选择性比其他催化剂要强。TAPM/SiO2做催化剂时环氧丙烷转化率较低(89.0%),异构体选择性是66.6%。 TBD/SiO2、NH(CH2)2NH2/SiO2和NH2/SiO2做时环氧丙烷转化率很高(>94%),但其异构体选择性不同。带有弱碱性的NH(CH2)2NH2/SiO2 和NH2/SiO2异构体选择性更高(>82%),而中等碱性的TBD/SiO2异构体选择性较低(73.7%)。 对于固体碱性催化剂, 中等碱性的催化剂理论上应当具有良好的异构体选择性 [20]。TBD/SiO2的异构体选择性较低可能是由于TBD 具有大的分子骨架结构。催化剂可用过滤法很容易地回收并再利用,利用7次后环氧丙烷的转化率仍然在89%以上,而且在403 K的温度下多次循环利用后异构体选择性还能保持不变(表 4),表明接枝到硅表面的氨基官能团在实验条件下是稳定的。其他样品的可重复利用性和NH2/SiO2相似。3.4. 可能的反应机理无机固相催化剂已被广泛用于甲醇+环氧丙烷=丙二醇甲醚的合成中[31],该反应中甲氧基离子和质子分别吸附在催化剂表面酸性位点和碱性位点上,然后甲氧基离子进攻C(1)位点。然而在目前情况下,用于该反应的催化剂特征是仅有一个反应位点,例如,带有和均相碱性催化剂相似的独有的碱性反应位点。由于催化剂上不存在路易斯酸位点,反应机理应当不同于那些双官能团的催化剂。1-甲氧基-2-丙醇在NH2/SiO2上合成的推测机理见线图1。第一步在甲醇和氨基官能团之间形成H-键。在第二步中,由于PO上CH3-官能团的空间位阻效应,甲醇上的O原子进攻C(1) 位点 ,质子吸附在催化剂的碱性位点上,然后C(1)–O键断裂夺取质子形成 1-甲氧基-2-丙醇。似乎可以合理地认为,NH(CH2)2NH2/SiO2、NH2/SiO2和TBD/SiO2具有更高催化活性是由于其适中的碱度,不仅能形成H-键而且也能很容易断裂H-键。带有弱碱性的TAPM/SiO2 仅能形成更多不稳定的H-键。 因此,TAPM/SiO2的活性低于其他样品。 如果这个机理是合理的,那么有机官能团的大骨架分子结构能够影响甲醇中O原子的进攻位点。 结果造成了大分子骨架的TBD异构体选择性较低。因此,具有合适碱度和简单分子骨架的有机官能团对于1-甲氧基-2-丙醇的高转化率和良好的选择性是非常重要的。4. 结论上述结果可得出下列结论:(1) 高效的超声技术能成功地制备氨基官能化的多孔硅催化剂;(2) 表征结果表明,氨基官能团以共价键的形式接枝到硅表面;(3) 合适碱度和简单分子骨架的有机官能团对于1-甲氧基-2-丙醇的高转化率和良好的选择性是非常重要的; (4)催化剂可以通过过滤回收并循环利用而保持恒定的活性。

204 评论(12)

花轮小丸子

1, the structure characteristics of the organic matterOrganic structures differ? Why many kinds organic?2 and hydrocarbonWhat call hydrocarbon? This chapter learned what hydrocarbon? What is the general?(1) the classification of hydrocarbon generationSaturated hydrocarbons, alkane CnH2n + 2 (1) experiment.it --Chain hydrocarbon olefins CnH2n (2) experiment.it --Unsaturated hydrocarbons --GuiTing hydrocarbon CnH2n - 2 (2) experiment.it --Aromatic hydrocarbons (such as benzene and TongXiWu CnH2n) 6-6) (n p(2) the structure of hydrocarbon characteristics and main chemical propertiesThe main characteristic structural chemistryC? C only alkane keying halogen such substitution reaction, decompositionC = = C olefin contain such key and halogen cycloaddition reactions, and potassium permanganate oxidation reaction, the polymerizationGuiTing containing C ≡ C key and halogen lamps, etc, and potassium permanganate cycloaddition reactions occur oxidation reaction, the polymerizationBenzene,(pah) and halogen lamps, etc, and hydrogen cycloaddition reactions occur in cycloaddition reactions3, a few important concept(1) TongXiWu: structure, the difference in the molecules of one or several CH2 atoms, call TongXiWu,(2) with heterogeneous phenomenon: compounds with the same formula, but have different structured phenomenon, called with heterogeneous phenomenon,(3) oil: has the same points of heterogeneous phenomenon known as oil each compound,4, several important organic chemical reaction typeIn this chapter, the knowledge of chemical properties of each representative involved in what reaction type? Its meaning is what?(1) the oxidation reaction: including two meanings with oxygen burning (2) can be KMnO4 acidic solution oxidation,(2) substitution reaction of organic molecules: some atoms or atoms were replaced by other atoms or directly, the reaction that substitution reaction. If the response, and halogen alkanes bromine liquid of benzene and nitration reaction, benzene, daqing heidimiao belong to replace reaction; etc.(3) cycloaddition reactions in organic molecules: unsaturated carbon atoms and other atoms or directly generate new compounds with direct response called cycloaddition reactions. Such as ethylene and bromine and other halogen or hydrogen reaction and reaction of acetylene and halogen lamps are cycloaddition reactions, etc.(4) polymerization: by the relative molecular mass of small molecules into the compound relative molecular mass of polymer reaction called polymerization. Such as vinyl chloride, the polymerization of polymerization are polymerization,5 and alkane system nomenclatureThe habit of alkane what disadvantages of? The system of nomenclature alkanes principles and steps is what?The basic principle of the system are: (1) the most simplified principle, Principle of its affiliated enterprises (2), But as a long a nearly a few main chain is more than a long, Numbers starting from the chain recently, chain number, chain position number. SumThe basic procedure of the system can be described as: (1) the main chain, says one chosen by, (2) Numbers, chain, 3 in substituents, note position, even before the short, 4 different, Jane before, the same base, 23.6, oil and coalOil and coal are important chemical raw materials, but also the important energy material from crude oil, so that all sorts of chemical products, which way to pass? How to improve the utilization of coal combustion efficiency and?Oil refining including fractionation, cracking and cracking. The different hydrocarbons fractionation is using the boiling point, through the continuous heating and condensation, put oil into different boiling point range distillation process of product. Cracking is under certain conditions, make long-chain hydrocarbon breaks into short chain hydrocarbon method, the main product is relative molecular mass smaller liquid hydrocarbon. Cracking is the main product is cracking, the depth of the relative molecular mass of smaller unsaturated hydrocarbons such as ethylene, etc.The value of coal to get the full use, must use integratedly, general measures have the distillation of coal coking coal (also called the coal gasification, and liquefaction.RuleA calculation formula of hydrocarbon and inference in its structureDetermine the basic methods of hydrocarbon formula:[a] according to organic mass fraction of each element of the quality (or elements, organic than) the most short, according to the type of organic determine the patent (formula). Namely: quality score - the most simple and formula[2] according to quality and organic organic Moore of each element of quality score (than), or the quality of 1mol calculate the organic material of each element of the atom, thus determine the number of atoms of each molecules. Namely:Quality score > 1mol material of each element of the atomic matter "[3] combustion general method. As for the hydrocarbon CxHy set, due to the x and y is relatively independent, calculation of simple data. According to the hydrocarbon combustion reaction, with the general formula calculation, CxHy the x and y, finally obtained the formula for hydrocarbon.Note:(1) gas molar mass = 22.4 L/mol x dg/L (d for standard conditions gas density).(2) one of A gas gas relative density for DA, the gas type quantity M = MADA.(3) by the molecular formula for hydrocarbon method:1 M / 14, except for olefins, can infer, its business for cycloparafin hydrocarbon or the number of carbon atoms,2, 2 M / 14 can do, can infer, its business for paraffin carbon atom number for,3 M / 14, poor can consume, GuiTing or two pieces for olefin or ring for olefin, the number of carbon atoms.4 M / 14, six can infer, except for the benzene or TongXiWu benzene.By type quantity available for the patent law, the steps over business as follows:1 to contractor and the remainder from division, type of hydrocarbon quantity of patent, symmetrical H atom number can't super saturated.2 for equivalent substitution identified with the type of hydrocarbon quantity of hydrocarbon or other derivatives, patent:(1) 1 C atoms can replace 12 H atoms,(2) 1 O atom may replace 16 H atoms or molecules CH4 "1",(3) a N atoms can replace 14 H atoms or molecules "1" CH2, H atom number to keep even.Complete combustion relevant laws(1) the amount of the hydrocarbon (CnHm) complete combustion, oxygen consumption of many decisions in n + values, n + and oxygen consumption of more and less.(2) the quality of hydrocarbon (such CnHm) complete combustion, oxygen consumption of much depends on the mass fraction of hydrogen, namely, the value, the more oxygen consumption, or less.(3) the quality of hydrocarbon (such CnHm) complete combustion, mass fraction of carbon, hydrogen, the more the CO2 mass fraction, the more the H2O.(4) in the same hydrocarbon in any mixing ratio, are: (1) the quality of a mixture of hydrocarbon element mass fraction ratio, 2 the quality of mixed operation must use complete combustion, O2 quality of the quality of CO2 are unchanged.(5) for the hydrocarbon CnHm formula for:When m = 4, and the amount of material complete combustion,2 when m < 4 when, after the complete combustion reduced.3 when m > 4 when, after the complete combustion.afterThree, all kinds of hydrocarbon and H2 bonus amount of substance of:Unsaturated hydrocarbons with the biggest bonus material H2 quantityOlefins 1:1The diolefins 1:2GuiTing 1:21:3 and TongXiWu benzenestyrene1:4 - CH CH2According to the formula of hydrocarbon may have a structureGeneral from alkane CnH2n + 2, the molecules of C = C per formed a bond or a ring, reduce 2 hydrogen original, Every form a molecule of ≡ C C key, reduced the four hydrogen atoms. According to this law by the hydrocarbon formula that may have its properties, the structure can determine the structure Jane. As for the hydrocarbon C5H8 formula with the amount of substances such as Br2 bonus, try the structure and its possible that the structure of Jane write. First according to its molecules known its molecules of C5H12 less than four hydrogen atoms, may be the diolefins and GuiTing or ring, according to its olefins with Br2 bonus for the ring that its proportion in olefins and structureFive, we write and reaction of monomer. Polymers(1) we reaction written:Single olefins we response for:The diolefins conjugate of reaction to we:3 when consider different monomers we may have different connection. Such as styrene and ethylene reaction between we:(2) polymer monomer judgment1 polyethyleneThe chain for two carbon atoms, as the monomer vinyl type, such as:2 butadiene tacklesThe chain is four carbon atoms, and between two carbon atoms have C = C, it should find tackles, such as: monomer butadiene3 mixed(1) when the chain has four carbon atoms, and C, C C = C between, shall be deemed to contain two vinyl monomers, such as type:(ii) when the chain, first look longer without C = C, if have, and C = C in the left side, right, each C atoms tackles as butadiene type, the C atomic every two as a vinyl structure. Such as:Sixth, the lowest series principleSo-called minimum principle is: to advocate series from which side chain Numbers, to a minimum, chain for the principle, if have multiple chain, from different endpoints Numbers, then a number by a comparison of the differences, first appeared in the number of small, a number that Numbers method Numbers.[example] the name of the organic matter, is correctA. 2,3,3,8,8 - five methyl nonaneB. 2,2,7,7,8 - five methyl nonaneCristiano 2,3,3,5,5 - five methylD. 2,2,4,4,5 - five methylAnalysis: according to the fault solution has abandoned the organic named "chain should follow the principle of minimum sum of serial number, and choose A mistake. Do not pay attention to four "CH2 group" of existence, and miss choose C or D.Solution: firstly, the determination of the main chain chain have nine rather than five carbon atoms, C, D do not choose. Then, if the Numbers from left to right, are chain Numbers for: 2,3,3,8,8, If from right to left, is a chain Numbers for: 2,2,7,7,8. Above two Numbers will be compared, the first by bit identical, the second is different. According to the principle of minimum series, the latter is correct, and that the name is listed in organic 2,2,7,7,8: five methyl nonane.Answer: BFor now, China organic named executive is released in 1980, for the new principle with international naming, from the former Soviet union, abandoned by the 1960, the principle of the old "serial number of minimum principle", "the lowest series" principle. Two methods, the number of minimum principles through the calculation to determine the direction of the starting point and Numbers, observing the principle of minimum series can be determined by the starting point and Numbers, apparently more directly, the latter is more simple.Seven, with heterogeneous phenomenon and oilWith heterogeneous form and writing orderCarbon frame position of heterogeneous functional groups of heterogeneous type heterogeneousOil of writing teachingPick, hang from the middle, Move toward the edge; less, After the first methyl ethyl;, After the first centralized, scattered, Transform, not with.

252 评论(9)

笑寒天下

你这个是专业论文,有很多专业词汇的。不是这个专业的很难搞。你自己用翻译软件辅助一下,应该不难啊,并且对自己也是个锻炼啊。实在不行的话,发给我看看。

127 评论(11)

大果果就是我

我翻译的。你觉得可以的话多少给点。如有错还请多包含。合成的H2tsalamo计划1所示。该 在thiosalicylaldehyde5b,反应12,13 1,2双(aminooxy) ethane14给予47%的无色产生H2tsalamo crystals.15 H2tsalamo是非常稳定都在固体 国家和解决方案。该H2tsalamo核磁共振谱 在氘代氯仿是没有改变,甚至经过几次days.15因此,肟配体H2tsalamo更稳定比H - 2A火箭 tsalen。然而,在高度稀释的溶液H2tsalamo 分解很慢好氧条件下可能 由于自氧化。因此,H2tsalamo稳定性较差比H - 2A火箭 萨拉莫。 H2tsalamo与镍反应(二)醋酸二氯甲烷/ 甲醇负担相应的镍(II) 复杂,67%的收益率在深褐色的结晶。元素 分析与单核公式一致 配合物[Ni(tsalamo)] .16在米高峰/ z)的387.98 [镍 (tsalamo)]在电喷雾质谱(图S1和S2 +, 支持信息)也支持单核 结构。此外,在核磁共振谱 镍(II)在氘代氯仿6尖锐复杂的信号出现, 说明专用形成一个对称的, 反磁性复杂。在电子吸收光谱, 日日的过渡是在620 nm处观察(?)260)和1 电荷转移带,观察到382纳米(?)6000)(图 1),它是低自旋特性平面方形镍 (二)与N2S2协调spheres.17这个简单的复合物 和容易制备的金属配合物1 N2S2 螯合物对比与使用合成吃力 相应的亚胺模拟H2tsalen.4 ,6 - 10

169 评论(14)

美味偏执狂

人们已经认识到,关于薄膜金属薄膜支持与相应的吸附性能的差异展示 散装metaloxides。修改后的属性休息1 电荷交换与吸附物种和金属/金属 氧化接口。这一现象最初预测的金原子 吸附在氧化镁/钼(100),后来证实实验 通过扫描隧道显微镜在Au原子测量 支持氧化镁/银(100)。类似的影响预测 并确认二氧化氮吸附在氧化镁/银(100),并 后来被证明申请不同类型的氧化物。 这部小说的催化性能的超薄氧化镁薄膜 银(100)源自认为O2是表面活性事实。 在图2中,电子态密度预计到氧气 州(态密度)是显示的O2/MgO和O2/MgO/Ag。案件 对氧化镁吸附,2π*状态是半满的分子 是一个三联。这种情况是不同的氧吸附在氧化镁/ 银(100),其中变为负电荷的分子(成形 一偶极)。这显然是观察到的态密度在一开始 空2π*国家已经提出以下费米能级。的收费 该分子是贝德尔证实了分析。对于O2/MgO / 银(100),氧气是收取-0.72位置,氧化镁0.54 e和银的 0.18大肠杆菌在图2中,我们还展示了电荷密度差 图[ΔF)架F(O2/MgO/Ag) - F(下氧) - F(下氧化镁/银)]。 ΔF清楚 揭示了电荷的2π*国家利益。在氧化 第一CO分子的过程中,该系统保留了双合 自旋态;在过渡态,自旋密度转移 对氧原子的表面上仍然存在。多余的电荷 这个原子计算为0.98电子。 氧的吸附在银后,支持氧化镁的活化 还观察到的结构特性。的O - O键长(表 1)为0.08较长的氧化镁/银相比,唯一的氧化物。 的CO键长计算为在氧化镁和氧化镁类似/ 股份公司。这是有关的二氧化碳吸附只有微弱的支持影响的事实。在第一个过渡状态,面向对象 (丙- O)键拉伸长度由0.12(0.04)Å。这架C - O值 可以比在Pt(111),它的情况下计算 为1.16。在O2的吸附在氧化镁/银(100)诱导 在氧化膜结构明显松弛。在rumpling 2%的氧化镁/银系统,而这是-17%的O2/MgO / 股份公司。在rumpling变化是由于镁离子的协调 在表面层的阴离子O2和降低O型抗原的距离 在接口。平均O型抗原距离减少到2.65 到2.46。大型结构松弛是一致的 其他吸附以前的结果(见,例如,15克)。

95 评论(9)

相关问答