• 回答数

    5

  • 浏览数

    296

寒风夜雨119
首页 > 英语培训 > 机械英文pdf

5个回答 默认排序
  • 默认排序
  • 按时间排序

小楼新雨

已采纳

英文的PDF文件翻译成中文可以使用翻译工具进行翻译,方法很简单。

下面是具体的操作步骤:

一、打开迅捷在线翻译工具。

二、在源语言的选项里,选择英文,然后在后面的目标语言中选择简体中文。

三、点击选择文件的按钮,添加需要进行翻译的文件。

四、文件选择好之后,点击开始翻译的按钮,然后就开始上传文件了。文件上传成功就会开始翻译的操作。

五、等待翻译完成,点击下载文件的按钮,将文件下载至电脑上,之后就可以点击查看翻译好的文件了。

上述就是用在线翻译工具将英文的PDF文件翻译成中文的方法。

机械英文pdf

264 评论(12)

Candice18611

中国是世界上机械发展最早的国家之一。中国的机械工程技术不但历史悠久,而且成就十分辉煌,不仅对中国的物质文化和社会经济的发展起到了重要的促进作用,而且对世界技术文明的进步做出了重大贡献.传统机械方面,我国在很长一段时期内都领先于世界。到了近代由于特别是从18世纪初到19世纪40年代,由于经济社会等诸多原因,我国的机械行业发展停滞不前,在这100多年的时间里正是西方资产阶级政治革命和产业革命时期,机械科学技术飞速发展,远远超过了中国的水平。这样,中国机械的发展水平与西方的差距急剧拉大,到十九世纪中期已经落后西方一百多年。新中国建立后特别是近三十年来,我国的机械科学技术发展速度很快。向机械产品大型化,精密化、自动化和成套化的趋势发展。在有些方面已经达到或超过了世界先进水平。总的来说,就目前而言中国机械科学技术的成就是巨大的,发展速度之快,水平之高也是前所未有的。这一时期还没有结束,我国的机械科学技术还将向更高的水平发展。只要我们能够采取正确的方针、政策、用好科技发展规律并勇于创新,我国的机械工业和机械科技一定能够振兴,重新引领世界机械工业发展潮流。就小型夯实机械而言:上世纪60年代以前,我国小型夯实机械非常缺乏,很多小型场地的夯实基本上采用人工夯实。上世纪60年代初期,长沙建设机械研究所与北京建筑工程学院等单位合作,在群众性技术革新成果的基础上总结发明了具有中国特色的蛙式夯实机,1962年获国家科技发明奖。蛙式夯实机结构简单,维修、使用方便,很快成为我国60年代夯实机械的主导产品。据不完全统计蛙式夯实机累计产量达到50000多台,在我国经济建设中发挥了重要作用。70年代以后,蛙式夯实机逐渐被性能更先进的振动冲击夯和振动平板夯所替代,目前蛙式夯实机已经很少,基本被淘汰。1964年,长沙建设机械研究所开发了HB120型内燃式夯实机,开始由上海工程机械厂生产,后来主要由津市洞庭工程机械厂生产,年产量200台左右。80年代,内燃式夯实机产品质量有较大提高,曾出口东南亚和非洲地区。90年代以后,内燃式夯实机产销售量也在逐渐减少,目前只有少数小型民营企业生产。1977年,长沙建设机械研究所和柳州市建筑机械厂开发了我国第一台HZR250型和HZR70型振动平板夯,这两种产品分别于1979 年和1982年通过了由建设部组织的鉴定。随后义乌建筑机械厂、四平建筑机械厂、安阳振动器厂、津市洞庭工程机械厂等多家企业都开始生产振动平板夯。1986年长沙建设机械研究所又开发了较大的HZR450型振动平板夯。上世纪90年代以后,振动平板夯在我国有了较快的发展,产品品种、规格和生产企业增多,国外的振动平板夯陆续进入中国市场。1983年,长沙建设机械研究所和湖北振动器厂联合开发了我国第一台HZR70型振动冲击夯,1984年通过了由建设部组织的鉴定,1985年获建设部科技进步三等奖。由于振动冲击夯具有压实效果好、生产率高、体积和重量小、轻便灵活等突出特点,深受用户欢迎,得到了迅速的推广使用,并很快发展到资江机器厂、新乡第三机床厂和津市洞庭工程机械厂等几十家企业生产。振动冲击夯虽然比振动平板夯开发晚,但发展速度、产销量和使用广泛性比振动平板夯大得多,目前已成为我国夯实机械中产销量最大的主导产品。上世纪90年代以后,国外的振动平板夯陆续进入中国市场。振动冲击夯和振动平板夯在我国的成功开发,不仅为我国建设施工部门提供了性能先进的夯实机械,取得了良好的经济效益和社会效益,而且使我国夯实机械技术向前跨进了一大步,缩短了与世界先进水平的差距,促进了我国压实机械的发展。就机械加工而言:热加工 铸造 据考古发现,在北京平谷、昌平、房山等处曾出土了公元前16世纪(商代)的青铜礼器。 明永乐年间(1403~1424年),北京制造出享誉世界的明永乐大铜钟(46.5吨)和钟楼大铜钟(63吨)及铁钟(25吨),采用分炉熔化、地坑造型和陶范法铸造。 20世纪50年代以前,北京在铸造上采用粘土砂手工造型。1955年,北京第一机床厂开始采用漏模造型、双面模型型板及铁型板和标准砂箱造型。1965年,开始采用塑料模型。 1980 年,北京市机电研究院与北京玛钢厂研制成功工频无芯塞杆底注式保温浇注电炉。1982年,该院与北京机床铸造二厂研究成功冲天炉风口吹氧技术。 1985~1988年,北京机床研究所试验成功浮动端面密封环的压力铸造工艺。 锻压 1959年,北京第二通用机械厂(后改名北京重型机器厂)建成2500吨水压机。1971年,该厂制造出6000吨水压机,这是当时北京最大的锻压设备。 1968~1979年,北京起重机器厂先后采用300吨油压机和2000吨油压机制造出起重机吊臂和大型覆盖件。 80年代,北京市机电研究院和北京市模具中心研制出一系列高精度多工位冲裁模具,接近或达到进口模具水平,改变了北京精密冲裁模具依赖进口的局面。 热处理 1949年前,北京已采用电炉、盐溶炉、热电偶等手段进行零件退火、回火、淬火、正火、调质、渗碳等热处理。 1956年,北京第一机床厂开始采用高频感应淬火。1961年,北京第二机床厂开始采用气体氮化淬火。1969年,北京量具刃具厂开始采用光亮淬火。 1978年,北京机床研究所研究完成机床导轨表面接触淬火工艺及设备、淬火质量检查技术条件的研究。1979年,铁道科学研究院和中国科学院力学研究所等合作完成大功率柴油机缸套表面的激光改性处理的研究。 1979年,北京市机电研究院研制成功千瓦级二氧化碳激光器,并于80年代初分别应用于汽缸套和邮票印刷设备的激光热处理。其中,清华大学、北京市机电研究院、北京邮票厂共同完成邮票厂七色机打孔器表面激光强化研究。 1984~1990年,北京市热处理研究所研究成功真空热处理、气体渗碳微机控制技术(与北京航空航天大学合作)、稀土软氮化、粉末冶金制品表面强化、煤油加甲醇小滴量法微机可控渗碳、固体渗硼、渗碳过程微机辅助工艺设计及跟踪控制系统等热处理新技术,并应用于生产。 焊接与切割 1949年,北京已有气焊、电弧焊及氧乙炔火焰切割等手工作业。 1963年,北京金属结构厂与一机部机械科学研究院合作开发出钨极氩弧焊,并实现了氮气等离子切割不锈钢。1964年,用直流钨极氩弧焊及焊丝合金化技术解决了核工业用倾斜式电解糟纯镍焊接。 1966年,北京金属结构厂开发出了使被焊球体旋转的埋弧自动焊。1968年,该厂开始以液化石油气代替乙炔切割。 80年代初,清华大学发明了新型MIG焊接电弧控制法,在控制电弧技术上取得突破。 80年代初,北京城建设计院等完成液化石油气移动式气压焊轨技术的研究和应用。 1990年,北京金属结构厂开始采用数控精密切割和具有光电跟踪及数控寻踪读入自动编程的大功率等离子切割技术。可见,我国机械发展在近代发展其迅速。China is the world's first national machinery development. Chinese mechanical engineering technology not only has a long history and splendid achievements in Chinese is not only the material culture and social economic development plays an important role in the world, and to promote the progress of civilization, technology has made great contribution to Chinese traditional machine. And in a long period ahead in the world. In modern times, especially from the early 18th century, due to the nineteen forties, due to the economic and social reasons, such as the China machinery industry, stagnation, in the 100 years is western bourgeois political revolution and industrial revolution, mechanical science and technology is developing rapidly, and far more than the level of China. So, China mechanical development level and the western gap widens, sharply to the 19th century middle behind western one hundred years.After the founding of new China, especially in the past 30 years, our country's mechanical science and technology development speed. To the mechanical product large-scale, precision, automation and discusses the trend of development. In some aspects has reached or exceeded the world advanced level. Generally speaking, currently China mechanical science and technology achievement is huge, developing fast, high level of unprecedented. In this period, China has no end of mechanical science and technology will develop to a higher level. As long as we can adopt the correct policy, with good technology development and innovation, our machinery industry and mechanical technology can revitalize, leading to the development trend of mechanical industry.Just small ramming machinery:In the 1960s, China mechanical very small tamp lack, many small venues ramming basically USES artificial ramming.Early 1960s, changsha construction machinery institute and Beijing architectural engineering institute, etc., the technical innovation achievements in mass on the basis of summing up Chinese characteristic invented the breaststroke ramming machine, 1962 exceeded national science and technology. The breaststroke ramming machine structure is simple, easy to use and maintenance in 1960s, soon became the dominant products to consolidate machinery. According to not complete count breaststroke tamp cumulative yield reached more than 50,000 machine, in the economic development of our country has played an important role. Since 1970's, the breaststroke ramming machine was gradually more advanced performance of vibration shock ram and vibrating plate ram, now replaced by laying machine has rarely breaststroke, basically be eliminated.In 1964, changsha construction machinery institute HB120 developed movable type, type of Shanghai began laying machine, engineering machine production mainly by tianjin municipal later, annual production engineering machinery dongting about 200. In the 1980s, movable type ramming machine product quality has increased greatly, have exported to southeast Asia and Africa. Since 1990s, internal-combustion type ramming machine production sales, and gradually decreased in only a few small private enterprise production.In 1977, changsha construction machinery factory buildings and developed in liuzhou HZR250 type and the HZR70 type vibrating plate ram, these two kinds of products in 1979 and 1982 passed by the ministry of construction of the organization. Then yiwu building construction machinery factory, siping, anyang vibrators factory, tianjin municipal engineering machinery dongting and other enterprises have started producing vibrating plate ram. In 1986, changsha construction machinery research and develop a larger HZR450 type of vibrating plate ram. Since 1990s, vibrating plate ram in our country has developed very quickly, varieties of products, specifications and increase production enterprises, foreign vibrating plate ram gradually to enter the Chinese market.In 1983, changsha construction machinery institute and the joint development of hubei vibration in the first HZR70 type vibration shock ramming, 1984, passed by the ministry of construction, organization construction technology progress in 1985 won prizes. Due to the vibration impact compaction result has good ramming, productivity, high volume and weight of small, lightweight flexible outstanding characteristics, deeply user etc, obtained a rapid promotion, and soon ZiJiang development to the factory, xinxiang municipal engineering machine tool plant and tianjin dozens of dongting production factory etc. Vibration shock ramming although than vibrating plate ram, but later development speed of development, production and use of extensive than vibrating plate ram, has become the largest in China in the ramming machinery products. Since 1990s, foreign vibrating plate ram gradually to enter the Chinese market.Vibration shock ramming and vibrating plate ram the successful development in our country, not only for our construction department provides advanced performance of mechanical, laying have achieved good economic benefit and social benefit, and make our ramming mechanical technology into a big step forward, shorten the gap with the advanced world level, promoting the development of compaction machine.The mechanical processing:According to the archaeological discovery, hot-working casting in Beijing pinggu, changping and so have proved that the 16th century BC shang dynasty (bronze objects. Ming yongle (1403-1424 years), Beijing produce world-renowned Ming yongle great 3-ton bell made (46.5 tons) and tower (63 tons of great 3-ton bell made of iron clock (25) and the furnace of melting, pit TaoFan model and method of casting. In the 1950s, Beijing based on clay sand castings in manual. In 1955, Beijing first machine tool plant began using leakage mould modelling, double-sided model and iron plate type plate and standard sand box modelling. In 1965, start using plastic model. In 1980, the institute and Beijing municipal electrical factory has successfully developed line frequency coreless bathroom plug stem bottom note type electric insulation casting. In 1982, hospital and Beijing the casting machine research cupola tuyere oxygen blowing technology. 1985-1988, Beijing institute of machine of floating end face seal ring by die successful test pressure casting process.In 1959, Beijing second metalforming machinery general factory changed (Beijing) built 2500 ton heavy-duty hydraulic press. In 1971, the factory produced 6,000 tons, which is then Beijing hydrtesting biggest metalforming equipment. 1968-1979, Beijing hoisting machine factory has 300 tons of using hydraulic press 2000 tons and create crane and large panel. In the 1980s, Beijing institute of electrical and developed a series of Beijing mould centre high-precision cutting die, the multistage close to or to import mould level, changed Beijing precision punching moulds dependence on imports.Before 1949, Beijing has heat treatment furnace, salt dissolved by thermocouples means furnace, quenching and tempering, parts of annealing, normalizing, quenching and tempering, carburizing and etc. In 1956, Beijing first began using high-frequency quenching machine tool plant. In 1961, the Beijing second machine tool plant began using gas nitriding quenching. In 1969, the following enterprise by Beijing gage start light quenching. In 1978, the complete machine tool research institute of Beijing guide surface contact quenching process and equipment, quenching condition of quality inspection. In 1979, scientific research institute of China academy of railway and mechanical institute of high-power diesel engine cylinder collaboration of surface modification of laser. In 1979, Beijing institute of electrical carbon dioxide laser is developed, and the kilowatt in early 1980s respectively applied in cylinder and stamp printing equipments of laser treatment. Among them, tsinghua university, Beijing, Beijing institute of electrical YouPiaoChang jointly completed YouPiaoChang seven color machine DaKongQi laser surface strengthening research. From 1984 to 1990, Beijing institute of vacuum heat treatment research, gas carburizing microcomputer control technology (Beijing university of aeronautics &astronautics and cooperation), rare earth soft nitriding, powder metallurgy products surface strengthening, kerosene and methanol small drops of microcomputer control method of carburizing, solid boriding and carburizing process computer aided process planning and tracking control system, and the application of new technology heat in production. Welding and cutting in 1949, Beijing has geo-drilling, electric welding and cutting etc oxyacetylene flame manual operation. In 1963, Beijing metal structure and YiJiBu mechanical science research cooperation to develop tungsten argon arc welding, and realize the nitrogen plasma cutting stainless steel. In 1964, the use of dc argon arc welding and tungsten wire alloying technology solved by tilting electrolysis industry worse pure nickel welding. In 1966, Beijing metal structure factory developed by rotating sphere of the submerged arc welding automatic welding. In 1968, the plant began to liquefied petroleum gas (LPG) instead of acetylene cutting. In the early 1980s, tsinghua university invented new MIG welding arc arc technology in control, control a breakthrough. In the early 1980s, the Beijing urban construction design completed liquefied petroleum gas (LPG) mobile pneumatic rail welding technology research and application. In 1990, Beijing metal structure factory to adopt CNC precision cutting and with photo-electricity tracking and CNC pursuit of high input automatic programming technology plasma cutting.Visible, China mechanical development in modern development of its rapid.

276 评论(8)

吃货在学厨

怎么翻译PDF文件内容

260 评论(14)

木糖不纯

《机械制造技术基础习题集英汉对照》百度网盘pdf最新全集下载:链接:

326 评论(14)

xxs的吃喝玩乐

Advanced Manufacturing: Robotic Technology and Automation Summary At present a Car Company manufacture a part of an automobile suspension assembly known as a Crosstube. They are considering moving from manual to robotic production in either a single cell/single robot or line/multi robot layout. The following report recommends the use of the Fanuc Arc Mate robot, which is a compact, six axis, modular-built, electric servo-driven robot which is controlled by the a R-J3 controller with ArcTool application software. All ancillary equipment options are considered. The two layouts are considered and all health and safety implications are detailed. The report concludes with a discussion on the validity of each layout. For low volume manufacture it is recommended that a single-cell layout is utilised. For economic production of high volumes a line layout would be the primary choice. Contents 1.0 Introduction 2.0 Robot Specification 2.1 Mechanical Characteristics 2.2 Performance Specifications 2.3 Programming & Control Methods 3.0 Specification Of Ancillary Equipment 3.1 Welding Tool 3.2 Gripper 4.0 Robotic Assembly 4.1 Cell Layout 4.1 Line Layout 5.0 Health and Safety 5.1 Cell Layout 6.2 Line Layout 6.0 Discussion 7.0 References 8.0 Appendix 1.0 Introduction BL Cars Ltd manufactures a part of an automobile suspension assembly. It is known as a Crosstube. The complete part consists of four thin sheets of steel presswork. Two parts are identical and are positioned either end of the larger cross brace, which has been formed from two larger pieces of sheet steel.. Presently the two parts making up the cross brace are secured using specific jigs. Once secure they are spot welded along the flange edges. The next step is to secure the two mounting plates to the presswork. The process is completed by arc welding the component to add extra strength to the spot welds and secure the mounting plates. N.B. When the parts are pressed from the sheet steel locating points are incorporated. This ensures each part is located in the correct position in the jig. The use of industrial robots is ever increasing. The robot usually does a secondary machinery operation after a primary shaping operation. When performed manually, this secondary operation often requires the operator to work in an unpleasant environment, to carry out a repetitive and tiring task with bulky tools. BL Cars Ltd is considering using robots to automate the Crosstube assembly process. The robots will be used for material handling, spot and arc welding in one of two contrasting layouts: 1. Single-cell, single robot -- low volumes 2. Line-layout, multi-robot -- high volumes Compared to manual welds, robot welds provide the following benefits: · A higher quality weld · Greater consistency · Increase arc on time as a proportion of total time · Increased operator safety · Automatic weld quality monitoring. Compared to manual handling, robots handling provides the following benefits: · Greater consistency · Greater accuracy · Increased repeatability · Low running costs 2.0 Robot Specification BL Cars Ltd have decided to use the Fanuc Arc Mate 50il. This robot is a compact, six axis, modular-built, electric servo-driven robot which is controlled by the R-J3 controller with ArcTool application software. The robot has been designed to maximise throughput and use of floor space by providing a compact, high speed design in a proven and reliable mechanical unit. Fanuc Arc Mate 50il · Price: Single robot £30,000 Mechanical Characteristics · The robot has six axes of movement. The diagram below illustrates axis movement: · The diagram below illustrates the floor space required for mounting: · Physical dimensions Performance Specifications Programming & Control Methods The majority of MIG welding jobs are conducted manually. It is relatively recently that machines have come on to the market with sufficient positional repeatability to automate the process reliably and flexibly. Arc welding using MIG is a complex multi-variable control task. Therefore is imperative that an effective controller is chosen. The controller BL Cars LTD has chosen to use is the R-J3 shown below: FANUC Robotics' SYSTEM R-J3 Controller uses advanced technology packaged in a proven, reliable third generation controller design. Process capability and open architecture features improve application and motion performance while simplifying system integration. SYSTEM R-J3 incorporates FANUC Robotics' unique "plug-in-options" concept which allows the flexibility for applications specific configurations while maintaining a commonality for all users of the system. Features: · 32-bit main CPU with dual processor architecture permits fast calculations, reduces program execution times and increases path accuracy · Provides extensive line of compact I/O modules for both digital and analogue signals · Allows for fast power-up and program execution with auto resume after cycle start · High-speed, precision control of up to 6 axes of motion · Auxiliary axes options can support up to three separate motion groups, each with its own control program and simple kinematic models · Advanced communications and networking capabilities include built-in Ethernet and PCMCIA interface · AccuPath provides enhanced path tracking during linear and circular motion while minimizing speed variations · Collision detection minimizes potential damage to the robot or end-of-arm tooling · Collision detection minimizes potential damage to the robot or end-of-arm tooling · Use of surface mounting and 3-D packaging reduces components and increases reliability · Quick change servo amplifier reduces maintenance time · Distributed I/O options reduce cabling costs and simplify troubleshooting · Increased use of fiber optics simplifies connections and enables faster communications · Increased use of fibre optics simplifies connections and enables faster communications · Multi-tasking operating system allows execution of several concurrent user programs · Instant trigger response (*4 ms) increases repeatability and improves process control. Benefits: · Reduces capital expenses: -Modular package allows rotator to be added only if needed -Eliminates expensive tools typically required to trim parts -Reduces number of robots required to achieve a target throughput · Increases throughput and quality up to 35% over competitive robotic tracking systems and manual welding · Adaptive well bias optimises weld wire positioning to fill lap joint gaps without reducing travel speeds (100 inches per minute) · Root Pass Memorization (RPM) allows users to perform multi-pass welds without retracking. 3.0 Specification Of Ancillary Equipment Welding Tool BL Cars have two options: 1. Use senseless robots and relatively precise tooling, better jigs, and more efficient transportation. This method reduces dimensional variation. 2. Use a robot and sensor system to locate the start and end points of each weld. This method also traces the seam steering the weld torch, and as a result reduces the error. Precise tooling is very expense. Taking into account capital and recurrent costs BL Cars will utilise robots with sensors. Seam Tracking Sensor 'The MIG EYE seam tracking sensor equips FANUC Robotics' welding systems with a laser-based tracking sensor. Designed specifically for arc welding sheet metal stampings, MIG EYE locates weld seams and provides real time control of the robot's path to maintain proper alignment between weld wire and joints.' The aim of this equipment is to maximise the quality and the speed of the weld. Assuming BL Cars Ltd choose to integrate this tool with an ARC Mate robot and Arc Tool software, MIG EYE reduces total programming time, enhances uptime and increases throughput for a wide variety of welding systems. The illustration below shows a tool which incorporates a sensor and MIG welder. Figure 2 torch/sensor package (57mm Diameter) Handling Tool To automate the line layout a handling tool is required. The tool will be used to hold the job whilst it is welded. It is necessary to consider the shape, orientation, weight, and the centre of gravity of the part. Once these variable have been determined an appropriate gripper can be selected. For photograph of chosen tool, and further information on handling tool application software please refer to appendix 1. 4.0 Robotic Assembly A robotic assembly cell is an independent unit consisting of one or more robots and associated peripheral equipment, by means of which a complete product can be assembled as far as possible. Cells are characterised by: · Relatively long cycle times · Relatively large number of various parts assembled per robot In the automotive industry the ratio of assembly cells to assembly lines is approximately 2:1. Cell Layout The diagram below illustrates a simple cell layout. Robotic Assembly Line A line layout comprises two robotic stations which are installed in series. The cycle times are relatively short, and also a limited number of parts per station and product transport between stations. Line Layout The diagram below illustrates possible line layout: Financial Considerations Set-up costs are greater in a line layout since there are two robots and extra ancillary equipment. However all line layout is capable of significantly higher throughput levels. Therefore if high volume manufacture is required a line layout will be the most economic option, providing a lower overhead cost/unit. 5.0 Health and Safety When implementing any form of system within a manufacturing environment it is imperative that all health and safety implications are taken into account and the appropriate precautions are incorporated. The majority of accidents involving robots have occurred: 1. Whilst an operator is programming 2. Whilst conducting experimental robot sequences 3. Whilst an operator is adjusting and/or maintaining peripheral devices 4. As a result of poor provision or installation of safety equipment From the above information it is apparent that when setting up a robotic cell it is important to consider 1. Operator safety whilst programming and/or maintaining the robotic system 2. Equipment protection. With robot systems, the type of robot, its use and its relationship to other plant will all influence the design and selection of safeguards. Any safeguard chosen must permit the required operations to be conducted and where necessary, teaching, programming, setting, maintenance and trouble-shooting operations to be carried out. Prior to safeguard design all hazards and injury risks must be identified. In this case a single robot cell will require a different level of safeguarding to a multi robot line layout. Perimeter fencing will be used to protect all members of staff from the equipment line. The fencing will consist of a hollow section steel framework in filled with mesh. All sections will be 2m high and securely fastened to the framework Where there is a danger of molten metal and welding flash infringing regulations, the filling between the framework will be manufactured from sheet steel. A sliding access gate will be located either side of the line to allow for regular access. A presence sensing device will be linked to the control system to instantly cut power to all machinery within the restricted area. Cell Layout Specific An operator will be working with the robot within the cell. Therefore it is important that suffient safety devices are incorporated within the cell to ensure operator safety. Four emergency stop buttons will be strategically positioned in and around the cell to allow emergency shut down in the event of a problem. An escape path and guidelines will be displayed outside the cell to highlight to the operator the action that should be taken if the robot goes out of control. Pressure mats will be placed around the robot. When pressure is applied to the mat the system is shut down. An alarm system will also be incorporated within the system to indicate human presence. The operator within the cell will always have ultimate control over robot activity. Infra-red curtains are flexible and reliable and make an excellent method of operator protection. Line Layout Specific Whilst operating under normal conditions its is unlikely that a robot will require manual human input. In addition to the general safety precautions, it is necessary to consider the possibility of the two robots damaging themselves and other equipment. This will be achieved by using positive stops which limit the movement of the robot to part of its envelope. Trip devices will be utilised to stop the robot if it comes into contact with people or other equipment A trapped key exchange will be used to secure all gates. This system will positively isolate the power supply to all parts of the robot installation. There is a lock on all perimeter gates and a lock on an isolator controlling the robot actuators. The key cannot be removed from the lock to open the gate unless the system is in a safe state. 7.0 Discussion The crosstube is mass produced, i.e. high volumes are required. The most cost effective layout choice would be the line-layout. Although higher set-up costs are involved initially the cost of implementing cells with an equivalent rate of throughput would be greater. However it is likely that this product will move into decline and the number of these products demanded will fall. When this occurs the line layout could be abandoned, the space utilised for a part in growth, and a single cell could be established for dedicated production of the cross tube. BL Cars Ltd must consider using robots cell for the economic manufacture of prototype and growth products. As growth slows and a product is nearing maturity a line-layout can be considered (volume determined)This method of assembly would be partially useful in the decline period of the products life cycle, as the cell would be capable of producing other similar parts or parts within the product family. 8.0 References · · Rooks. B., Rover 75 Sets New Standard In Body In White Assembly. International Journal, Vol. 26, Is 5, 1999 · Bromley. J. S.E., Davey. P.G., Vidler. A. R., Clocksin. W. F., Morgan. C. G.. An Implementation of Model Based Visual Feedback for Robot Arc Welding of Thin Sheet Steel. International Journal of Robotics Research Vol. 4 No. 1 1985 · Asfahl. R. C. 1992. Robots and Manufacturing Automation. John Wiley · Rampersad. H.K. 1994. Intergrated and Simultaneous Design for Assembly. John Wiley 这里有个电子杂志,是有关机械制造的:论文:简介:

127 评论(12)

相关问答