• 回答数

    3

  • 浏览数

    123

MIssinGLess
首页 > 英语培训 > 协助扩散英文

3个回答 默认排序
  • 默认排序
  • 按时间排序

兰兰110110

已采纳

高一生物必修(1)知识点整理1.细胞:是生物体结构和功能的基本单位。除了病毒以外,所有生物都是由细胞构成的。2.生命系统的结构层次:细胞→组织→器官→系统→个体→种群群落→生态系统→生物圈(植物没有系统) 其中最基本的生命系统:细胞 最大的生命系统:生物圈3..病毒是一类没有细胞结构的生物体。主要特征:①、个体微小,一般在10~30nm之间,大多数必须用电子显微镜才能看见;②、仅具有一种类型的核酸,DNA或RNA;(分为DNA病毒和RNA病毒)③、专营细胞内寄生生活;(有动物病毒、植物病毒和细菌病毒——噬菌体三大类)④、结构简单,一般由核酸(DNA或RNA)和蛋白质外壳(衣壳)所构成。4.细胞种类:根据细胞内有无以核膜为界限的细胞核,把细胞分为原核细胞和真核细胞两者均有细胞膜、细胞质、细胞核,且细胞膜结构相同①原核细胞:细胞较小,无核膜、无核仁,无成形的细胞核;遗传物质(一个环状DNA分子)集中的区域称为拟核;没有染色体;细胞器只有核糖体;有细胞壁,成分为肽聚糖。②真核细胞:细胞较大,有核膜、有核仁、有真正的细胞核;有一定数目的染色体(DNA与蛋白质结合而成);一般有多种细胞器。植物细胞壁(支持和保护),成分为纤维素和果胶。原核生物:蓝藻、细菌(如硝化细菌、乳酸菌、大肠杆菌等)、放线菌、支原体等真核生物:动物(草履虫、变形虫)、植物(衣藻)、真菌(酵母菌、霉菌、大型真菌)等。5.细胞学说的内容:细胞学说是由德国的植物学家施莱登和动物学家施旺所提出, ① 细胞是有机体,生物是由细胞和细胞的产物所组成; ② 所有细胞在结构和组成上基本相似; ③ 新细胞是由已存在的细胞分裂而来细胞学说的建立揭示了细胞的统一性和生物体结构的统一性,使人们认识到各种生物之间存在共同的结构基础;也为生物的进化提供了依据,凡是具有细胞结构的生物,它们之间都存在着或近或远的亲缘关系。细胞学说的建立标志着生物学的研究进入到细胞水平,极大地促进了生物学的研究进程。6.生物界与非生物界具有统一性:组成细胞的化学元素在非生物界都可以找到 生物界与非生物界存在差异性:组成生物体的化学元素在细胞内的含量与在非生物界中的含量明显不同7.组成生物体的化学元素有20多种:不同生物所含元素种类基本相同,但含量不同 大量元素:C、 O、H、N、S、P、Ca、Mg、K等;微量元素:Fe、Mn、B、Zn、Cu、Mo;①最基本元素(干重最多):C ②鲜重最多:O ③含量最多4种元素:C、 O、H、N ④主要元素;C、 O、H、N、S、P 水:含量最多的化合物(鲜重,85%-90%) 无机物 无机盐8..组成细胞 蛋白质:含量最多的有机物(干重,7%-10%)的化合物 元素C、H、O、N (有的含P、S)脂质:元素C、H、O (有的含N、 P) 有机物 糖类:元素C、H、O核酸:元素C、H、O、N、 P9..蛋白质(生命活动的主要承担者) NH2元 素——C、H、O、N(P、S) |R — C H —COOH基本单位——氨 基 酸 (20种) 特点:至少含有一个氨基(—NH2)和一脱水缩合 个羧基(—COOH),并且都有一个氨基和一个羧基连接在同一个碳原子上多 肽 (链) 肽键:—CO—NH—盘曲、折叠 几个氨基酸就叫几肽空间结构——蛋 白 质 ①氨基酸种类、数量、排列顺序不同(结构多样性) ②肽链的空间结构千变万化决定功 能——结构蛋白 与 功能蛋白—催化、运输、免疫、调节(功能多样性) (酶、载体、抗体、胰岛素)相关计算① 肽键个数(脱水数)=氨基酸个数(N)—肽链条数(M)② 几条肽链至少几个氨基和几个羧基(至少两头有)③ 蛋白质分子量=N×a -18×(N—M)④ 基因(DNA)中碱基:mRNA中碱基:氨基酸个数=6:3:110.核酸(遗传信息的携带者)一分子磷酸(1种)①基本单位是:核苷酸 一分子五碳糖(2种)(8种) 一分子含氮碱基(5种)②核酸功能:是细胞内携带遗传信息的物质,对于生物的遗传、变异和蛋白质的合成具有重要作用。③核酸的种类:脱氧核糖核酸(DNA)和核糖核酸(RNA) 用吡咯红和甲基绿染液染色——DNA变绿(细胞核)、RNA变红(细胞质)11.糖类:是主要的能源物质;主要分为单糖、二糖和多糖等①单糖:是不能再水解的糖。如葡萄糖、核糖、脱氧核糖(动植物都有)②二糖:是水解后能生成两分子单糖的糖。植物二糖:蔗糖(水解为葡萄糖和果糖)、麦芽糖(水解为葡萄糖) 动物二糖:乳糖③多糖:是水解后能生成许多单糖的糖。多糖的基本组成单位都是葡萄糖。多糖:④可溶性还原性糖:葡萄糖、果糖、麦芽糖等 脂肪(C、H、O):储能、保温、减少摩擦,缓冲和减压12.脂质分类 类脂:磷脂 (膜结构基本骨架,脑、卵、大豆中磷脂较多) 固醇类:胆固醇、性激素(维持生殖)、VD(有利于Ca、P吸收)(O含量相对少、H比例高,氧化分解释放能量多,耗氧多)13.水存在形式 含量 功能 联系自由水 约95% 1、良好溶剂2、参与多种化学反应3、运送养料和代谢废物 它们可相互转化;代谢旺盛时自由水含量增多;随结合水增加,抗逆性增强。结合水 约4.5% 细胞结构的重要组成成分 14.无机盐(绝大多数以离子形式存在)功能:①构成某些重要的化合物:Mg→组成叶绿素、Fe→血红蛋白、I→甲状腺激素 ②维持生物体的生命活动(如动物缺钙会抽搐、血钙高会肌无力) ③维持酸碱平衡(如NaHCO3/H2CO3)④调节渗透压(随无机盐与蛋白质含量增加而增大,维持细胞形态和功能植物必需无机盐的验证(溶液培养法,注意对照) 组成成分:主要是脂质和蛋白质,还有少量糖类 基本骨架——磷脂双分子层基本结构 镶、嵌、贯穿——蛋白质分子15.细胞膜 外侧——糖蛋白(与细胞识别有关) 结构特点:一定的流动性 功能特点:选择透过性(取决于载体蛋白的种类和数量) 主要功能:①将细胞与外界环境分隔开 ②控制物质进出细胞(自由扩散、协助扩散和主动运输) ③进行细胞间的信息交流16.物质跨膜运输方式:比较项目 运输方向 是否要载体 是否消耗能量 代表例子自由扩散 高浓度→低浓度 不需要 不消耗 O2、CO2、H2O、乙醇、甘油等协助扩散 高浓度→低浓度 需要 不消耗 葡萄糖进入红细胞等主动运输 低浓度→高浓度 需要 消耗 氨基酸、各种离子等大分子和颗粒物质进出细胞的主要方式是胞吞作用和胞吐作用。17.渗透作用:水分子(溶剂分子)通过半透膜的扩散作用。①发生渗透作用的条件:a、具有半透膜 b、膜两侧有浓度差②成熟植物细胞的结构:③细胞的吸水和失水:外界溶液浓度>细胞内溶液浓度→细胞失水外界溶液浓度<细胞内溶液浓度→细胞吸水④质壁分离(原生质层与细胞壁分离)和复原a.分离内因:原生质层伸缩程度比细胞壁要大b.分离外因:外界溶液浓度(如30%的蔗糖)>细胞内溶液浓度(浓度差越大,失水越快)c.质壁分离的条件:活细胞、有壁、大液泡、浓度差d.复原外因:外界溶液浓度(如蒸馏水)<细胞内溶液浓度(浓度差越大,吸水越快)e.当质壁分离时间过长或外界溶液浓度过大(如50%的蔗糖)时,细胞会因死亡而不能复原f.细胞在下列外界溶液中能自动复原:乙二醇、KNO3、甘油、尿素等溶液18.细胞质 细胞质基质:胶状物质,是细胞进行新陈代谢的主要场所。细胞器:具有特定功能的各种亚细胞结构的总称。(差速离心法)结构特点 细胞器 细胞器形状 细胞功能 注意问题双层膜结构 叶绿体 扁平椭球形 光合作用 色素、酶、少量DNA/RNA 线粒体 椭球形 有氧呼吸 酶、少量DNA/RNA单层膜结构 内质网 网状 运输、加工 粗面、滑面 高尔基体 扁平囊状 加工、分泌 动植物中功能不同 液泡 泡状 水分、颜色 色素、有机酸、单宁 溶酶体 椭球形 含多种水解酶,消化 能分解衰老、损伤的细胞,吞噬侵入细胞的病毒或病菌无膜结构 核糖体 粒状小体 蛋白质合成 (附着、游离)rRNA、蛋白质 中心体 两个⊥中心粒 有丝分裂 动物有、低等植物也有能产生水(碱基互补配对)的细胞器:叶绿体、线粒体、核糖体 能产生ATP的结构:叶绿体、线粒体、细胞质基质含色素的细胞器:叶绿体、液泡高等植物根中无中心体、无叶绿体体内寄生动物无线粒体,如蛔虫(进行无氧呼吸)19.细胞器的协调配合:如分泌蛋白的合成和运输①分泌蛋白:抗体、蛋白质类激素、胞外酶(消化酶)等分泌到细胞外②过程:核糖体 内质网 囊泡 高尔基体 囊泡 细胞膜 胞外(合成肽链)(加工、运输) (加工为成熟蛋白质)以上过程由线粒体提供能量20.生物膜系统:由内质网、高尔基体、线粒体、叶绿体、溶酶体等细胞器膜和细胞膜和核膜等共同构成的,组成成分和结构很相似,在结构和功能上是紧密联系的统一整体。21.细胞核的功能:是遗传信息库(遗传物质储存和复制的场所),是细胞代谢和遗传的控制中心;细胞核的结构: ①染色质:由DNA和蛋白质组成,染色质和染色体是同样物质在细胞不同时期的两种存在状态。 ②核 膜:双层膜,把核内物质与细胞质分开。 ③核 仁:与某种RNA的合成以及核糖体的形成有关。 ④核 孔:实现细胞核与细胞质之间的物质交换和信息交流。22..新陈代谢:是活细胞中全部化学反应的总称,是生物与非生物最根本的区别,是生物体进行一切生命活动的基础。 细胞代谢:细胞中每时每刻都进行着的许多化学反应。23.酶——降低化学反应的活化能①概念:是活细胞(来源)所产生的具有催化作用(降低化学反应活化能,提高化学反应速率)的一类有机物。(大多数酶的化学本质是蛋白质,也有少数是RNA)②活化能:分子从常态转变为容易发生化学反应的活跃状态所需要的能量。③酶的特性: a.高效性:催化效率比无机催化剂高许多。 b.专一性:每种酶只能催化一种或一类化合物的化学反应。c.酶需要较温和的作用条件:在最适宜的温度和pH下,酶的活性最高。温度和pH偏高和偏低,酶的活性都会明显降低。过酸、过碱或温度过高,酶的活性因结构破坏而丧失。24.ATP(三磷酸腺苷)——细胞的能量“通货” (生命活动的直接能源物质)①结构简式:A-P~P~P(A代表腺苷,P代表磷酸基团,~代表高能磷酸键,-代表普通化学键)特点:ATP的分子中的高能磷酸键中储存着大量的能量;化学性质不稳定,远离腺苷的高能磷酸键易水解,释放出大量能量(30.54kJ/mol),也很容易重新形成而储存能量。 ②ATP与ADP的相互转化:(时刻发生、动态平衡) 主动运输a. ATP水解,释放能量:ATP →ADP + Pi +能量——生命活动的直接能源 细胞分裂肌肉收缩b. 合成TP,储存能量:ADP + Pi + 能量 → ATP 兴奋传导 (细胞呼吸) (细胞呼吸)(光合作用)动物和人等 绿色植物等③吸能反应由ATP水解提供能量。放能反应释放的能量储存在ATP中。25.呼吸作用(也叫细胞呼吸)——ATP的主要来源①细胞呼吸概念:指有机物在细胞内经过一系列的氧化分解,最终生成二氧化碳或其它产物,释放出能量并生成ATP的过程。②有氧呼吸过程:阶段 项目 第一阶段 第二阶段 第三阶段场所 细胞质基质 线粒体 线粒体反应物 葡萄糖 丙酮酸和H2O [H]+O2生成物 丙酮酸、[H] CO2、[H] 水产生ATP的数量 少量 少量 大量1mol的葡萄糖彻底氧化分解后,可使1161kJ左右的能量储存在ATP(38个)中,其余的能量则以的热能的形式散失掉了③相关反应式:有氧呼吸的总反应式:无氧呼吸(酒精发酵):无氧呼吸(乳酸发酵)④比较:呼吸方式 有氧呼吸 无氧呼吸不同点 场所 细胞质基质,线粒体基质、内膜 细胞质基质 条件 氧气、多种酶 无氧气参与、多种酶 物质变化 葡萄糖彻底分解,产生CO2和H2O 葡萄糖分解不彻底,生成乳酸或酒精和CO2 能量变化 释放大量能量(大量ATP) 释放少量能量(少量ATP)相同点 第一阶段相同,均生成丙酮酸;均能释放能量,形成ATP⑤影响呼吸速率的外界因素:a.温度 b.氧气 c.水分 d.CO2⑥呼吸作用在生产上的应用:a.水果、蔬菜保鲜时:要低温(0℃以上)或降低氧气含量及增加二氧化碳浓度。b.粮油种子贮藏时:要风干、降温,降低氧气含量。c.作物栽培时:松土、排涝d.酿醋、包扎伤口时:应控制通气(或透气)26.光合作用——能量之源①光合作用概念:绿色植物通过叶绿体(场所),利用光能(条件),把二氧化碳和水(原料)转化成储存着能量的有机物(产物),并释放出氧气(产物)的过程②光合色素(在类囊体的薄膜上)——吸收、传递、转化光能 胡萝卜素:橙黄色(最窄)类胡萝卜素 叶黄素:黄色 色素的分类 叶绿素a:蓝绿色(最宽) 叶绿素 叶绿素b:黄绿色 叶绿素主要吸收红光和蓝紫光,类胡萝卜素主要吸收蓝紫光提取色素的试剂为无水酒精,分离色素的试剂为层析液,分离色素的方法是纸层析法(原理:不同色素在层析液中的溶解度不同,随滤纸扩散的速度不同)③光合作用的探究历程中的重要实验:普里斯特利“小鼠与绿色植物”——植物可以更新空气。萨克斯“植物半遮光”——绿色叶片在光合作用中产生了淀粉。思吉尔曼用“水绵与好氧菌”——叶绿体是绿色植物进行光合作用的场所,氧是叶绿体释放出来的。鲁宾卡门“H218O、CO2”——光合作用释放的氧全部来自来水。卡尔文“14C标记CO2”——探明CO2转化成有机物的途径 ④光合作用的过程比较项目 光反应阶段 暗反应阶段场所 在类囊体的薄膜上 叶绿体基质条件 光、色素、光反应酶 暗反应酶、ATP、[H]物质变化(用反应式表示) 能量变化 光能→ATP中的活跃化学能 ATP→(CH2O)中的稳定化学能总反应式 相互联系 光反应为暗反应提供[H]和ATP;暗反应为光反应提供 ADP和Pi(光反应产物ATP、[H]移动方向,囊状薄膜→叶绿体基质,而ADP、Pi则相反)C3、C5的变化规律: CO2减少时 C3 ↓ C5↑(解释少的原因角度: 光照变弱时 C3 ↑ C5↓ 消耗的多;生成的少)⑤影响光合作用的外界因素主要有:a.光照强度 b.温度 c.二氧化碳浓度 d.水 e.矿质元素供应⑥光合作用的应用: a.适当提高光照强度。 b.延长光合作用的时间。 c.增加光合作用的面积------合理密植,间作套种。 d.温室大棚用无色透明玻璃。温室栽培植物时,白天适当提高温度,晚上适当降温。 f.温室栽培多施有机肥或放置干冰,提高二氧化碳浓度。⑦光合作用与呼吸作用的关系:实际(总)光合作用量=净(表)光合作用量+呼吸消耗量27.化能合成作用实质:利用体外环境中的某些无机物氧化时所释放的能量来制造有机物,如硝化细菌。28.细胞增殖生物体的生长,既靠细胞生长增大细胞的体积,还要靠细胞分裂增加细胞的数量。①细胞不能无限长大的原因:体积越大,其相对表面积越小,细胞的物质运输的效率就越低。细胞表面积与体积的关系限制了细胞的长大。细胞核中的DNA一般不会随细胞体积的扩大而增加,这一因素也限制了细胞的长大。②细胞增殖是重要的细胞生命活动,是生物体生长、发育、繁殖、遗传的基础。③真核细胞的分裂方式有:无丝分裂、有丝分裂、减数分裂29.细胞周期①概念:指连续分裂的细胞,从一次分裂完成时开始,到下一次分裂完成时为止,为一个细胞周期。它有可分为两个阶段,即分裂间期和分裂期。②连续分裂的细胞:分生区、形成层、受精卵暂不分裂的细胞:不分裂的细胞:人的红细胞、神经细胞30.有丝分裂:体细胞增殖的主要方式①过程分裂间期: DNA复制和有关蛋白质合成,体积增大。时间长(90%—95%)、起点。 前期:“膜仁”消失现“两体”(最明显的变化:出现染色体) 中期:着丝点整齐排列在赤道板上,染色体形态数目清晰,观察的最佳时期 分裂期 后期:着丝点分裂,姐妹染色单体分离,成为两条相同的子染色体,由纺锤丝牵拉分别移向两极;染色体数目加倍 末期:“膜仁”再现“两体”失(植物:高尔基体→细胞板→细胞壁)②主要特征:染色体复制和精确地平均分配,(子细胞中染色体数与亲代细胞相同)③动植物细胞有丝分裂的区别 间期:(动物)中心体复制,前期分开 前期:纺锤体的形成方式不同(动物:中心体→星射线→纺锤体) 末期:细胞质的分裂方式不同(动物:中部向内凹陷,缢裂成两半)(核内染色体变化相同�分裂过程及时期相同)④与有丝分裂有关的细胞器: 核糖体(间期:合成蛋白质)线粒体(提供能量)高尔基体(植物末期:形成细胞板→细胞壁)中心体(动物前期:发出星射线,形成纺缍体)⑤有丝分裂中,染色体及DNA数目变化规律 a. 间期:染色体数目不增加,DNA加倍b. 前、中期:每条染色体上含2个姐妹染色单体, 染色单体数=DNA数=2染色体数c.后、末期:无染色单体,即单体为0, DNA数=染色体数d.后期:染色体数翻倍,同源染色体对数翻倍⑥有丝分裂(洋葱根尖)临时装片的制作步骤是:解离→漂洗→染色→制片根尖分生区细胞的特征是:细胞呈正方形,排列紧密。31.无丝分裂:无染色体与纺锤体的变化,如蛙的红细胞分裂32.细胞的分化①概念:在个体发育中,由一个或一种细胞增殖产生的后代,在形态、结构和生理功能上发生稳定性的差异的过程叫做细胞分化。②细胞分化的特点:持久性、不可逆、 遗传物质不改变(手术时也不改变 ) ③细胞分化的结果及意义:形成形态、结构和功能都不相同的细胞群,使多细胞生物体中的细胞趋向专门化,有利于提高各种生理功能的效率。是生物个体发育的基础④细胞分化的原因(实质):基因选择性表达(同一个体,各种细胞具有相同的遗传信息,但不同细胞的RNA和蛋白质有差别)33.细胞的全能性是指已分化的细胞,仍然具有发育成完整植物体的潜能。生物体的每个细胞中,都含有保持本物种遗传性所需要的全套遗传物质。全能性高低:受精卵>卵细胞>体细胞动物细胞核移植实验说明,已分化的动物体细胞的细胞核是具有全能性的。动物和人体内仍保留着少数具有分裂和分化能力的细胞,这些细胞叫做干细胞34.细胞的衰老细胞会随着分裂次数的增多而衰老。主要具有以下特征:①水分减少 体积减小 细胞萎缩 代谢变慢②酶活性降低 (如老年白发,其酪氨酸酶活性降低,影响酪氨酸→黑色素)③色素逐渐积累 (如老年斑,其脂褐素积累)④细胞核体积增大,染色质固缩,染色加深⑤细胞膜通透性改变 ,物质运输功能降低35.细胞的凋亡由基因所决定的细胞自动结束生命的过程(细胞编程式死亡)。如花瓣凋零、蝌蚪尾消失、被病原体感染的细胞的清除。36.细胞坏死是在种种不利因素的影响下,由于细胞正常代谢活动受损或中断引起的细胞损伤和死亡。37.细胞癌变①概念:生物体内有的细胞受到致癌因子的作用,细胞中的遗传物质发生变化,就变成不受机体控制的、连续进行分裂的恶性增殖细胞,这种细胞就是癌细胞。②特征:在适宜条件下,癌细胞能够无限增殖。(一般人体细胞能够分裂50—60次)癌细胞的形态结构发生变化发生显著变化。癌细胞的表面发生了变化(糖蛋白减少,易移动)③致癌因子大致分为三类:物理致癌因子、化学致癌因子、病毒致癌因子④原因:环境中的致癌因子会损伤细胞中的DNA分子,使这原癌基因和抑癌基因发生基因突变,导致正常细胞的生长和分裂失控而变成癌细胞。(累积效应)

协助扩散英文

153 评论(15)

蓝水晶朵朵

高一生物必修一复习提纲第一章 走进细胞 第一节 从生物圈到细胞1. 细胞是生物体结构和功能的基本单位.生命活动是建立在细胞的基础上的. 无细胞结构的病毒必需寄生在活细胞中才能生存. 单细胞生物(如:草履虫),单个细胞即能完成整个的生物体全部生命活动. 多细胞生物的个体,以人为例,起源于一个单细胞:受精卵,经过细胞的不断分裂与分化, 形成一个多细胞共同维系的生物个体. 2. 细胞是最基本的生命系统. 最大的生命系统是:生物圈。细胞 组织 器官 系统 个体 种群 群落 生态系统 生物圈第二节 细胞的多样性与统一性一.细胞的多样性与统一性1. 细胞的统一性: 细胞膜,细胞质,细胞质中都有核糖体.主要遗传物质都是DNA.2. 细胞的多样性: 大小,细胞核,细胞质中的细胞器,包含的生物类群等均不同. 根据细胞内有无以核膜为界限的细胞核,把细胞分为原核细胞和真核细胞两大类.这两类细胞分别构成了两大类生物:原核生物和真核生物.类别 原核细胞 真核细胞细胞大小 较小 较大细胞核(本质) 无成形细胞核,无核膜.核仁.染色体 有成形的细胞核,有核膜.核仁.染色体细胞质 有核糖体 有核糖体、线粒体等,植物细胞还有叶绿体.液泡等生物类群 衣原体, 支原体, 蓝藻, 细菌,放线菌(一支蓝细线) 动物,植物,真菌 常见的细菌有: 乳酸菌,大肠杆菌,根瘤菌,霍乱杆菌,炭疽杆菌. 常见的蓝藻有: 颤藻,发菜,念珠藻,蓝球藻. 常见的真菌有: 酵母菌.二:(略)细胞学说建立(德科学家:施旺,施莱登) 细胞学说说明细胞的统一性和生物体结构的统一性。第二章: 组成细胞的分子. 第一节: 组成细胞的元素与化合物一: 元素组成细胞的主要元素是: C H O N P S 基本元素是: C H O N 最基本元素: C组成细胞的元素常见的有20多种,根据含量的不同分为: 大量元素和微量元素.大量元素: C H O N P S K Ca Mg 微量元素: Fe Mn Zn Cu B Mo 生物与无机自然界的统一性与差异性. 元素种类基本相同,元素含量大不相同.占细胞鲜重最大的元素是: O 占细胞干重最大的元素: C二:组成细胞的化合物: 无机化合物:水,无机盐 细胞中含量最大的化合物或无机化合物: 水有机化合物:糖类,脂质,蛋白质,核酸. 细胞中含量最大的有机化合物或细胞中干重含量最大的化合物:蛋白质。.三: 化合物的鉴定:鉴定原理: 某些化学试剂能与生物组织中的有关有机化合物发生特定的颜色反应.还原性糖: 斐林试剂 0.1g/ml NaOH 0.05g/ml CuSO4 甲乙溶液先混合再与还原性糖溶液反应生成砖红色沉淀. (葡萄糖,果糖,麦芽糖) 注:蔗糖是典型的非还原性糖,不能用于该实验。蛋 白 质: 双缩脲试剂 0.1g/ml NaOH 0.01g/ml CuSO4 先加入A液再加入B液. 成紫色反应。脂 肪: 苏丹三(橘黄色)第二节: 生命活动的主要承担者: 蛋白质一: 组成蛋白质的基本单位: 氨基酸氨基酸的结构特点: 一个氨基酸分子至少含有一个氨基和一个羧基,且连接在同一个碳原子上.除此之外,该碳原子还连接一个氢原子和一个侧链基团. 各种氨基酸的区别在于侧链基团(R基)的不同生物体中组成蛋白质的氨基酸约有20种, 分为必需氨基酸(8)和非必需氨基酸(12)两种.二:氨基酸形成蛋白质 氨基酸的结构通式1. 构成方式: 脱水缩合脱水缩合: 在蛋白质的形成过程中,一个氨基酸的羧基和另一个氨基酸的氨基相连接,同时脱去一分子水,这种结合方式叫做脱水缩合.由2个AA分子缩合而成的化合物叫二肽. 由多个AA分子缩合而成的化合物叫多肽.连接两个AA分子的化学健叫肽键.2. 脱去水分子数等于形成的肽键数.假设一个蛋白质分子中含有的AA数为n若蛋白质只有一条肽链, 则脱去水分子数等于形成的肽键数等于n-1若蛋白质含有m条肽链, 则脱去水分子数等于形成的肽键数等于n-m蛋白质分子量的计算. 假设AA的平均分子量为a,含有的AA数为n则,形成的蛋白质的分子量为: a×n-18(n-m) 即:氨基酸的总分子量减去脱去的水分子总量3. 蛋白质结构的多样性:原因: 组成蛋白质的氨基酸种类,数目,排列顺序不同,肽链的折叠,盘曲及蛋白质的空间结构千差万别4. 蛋白质的功能 蛋白质结构的多样性决定了它的功能多样性:催化功能.结构功能.运输功能,信息传递功能,免疫功能等. 请举例:第三节 核酸一、DNA与RNA的比较(表) DNA(脱氧核糖核酸) RNA(核糖核酸)基本单位 脱氧核苷酸 核糖核苷酸化学组成 磷酸(P)+ 脱氧核糖+碱基(A.T.G.C) 磷酸(P)+ 核糖+碱基(A.T.G.U)存在场所 主要分布于细胞核中 主要分布在细胞质中主要功能 在生物体的遗传、变异和蛋白质的生物合成中有极其重要的作用。二、核酸的种类及功能核酸分为两大类:脱氧核糖核酸(简称 DNA )和核糖核酸(简称RNA)核酸的功能: 核酸是携带遗传信息的物质,在生物体的遗传、变异和蛋白质的生物合成中有极其重要的作用。三、核酸在细胞中的分布(1)实验原理:根据甲基绿和吡罗红对DNA和RNA的亲和力不同,用甲基绿和吡罗红的混合液对细胞进行染色。(2)水解时使用的是8%的盐酸,它的作用是:改变细胞膜的通透性,加速染色剂进入细胞,同时使染色体中的DNA和蛋白质分离,有利于DNA与染色剂结合。四、核酸的组成(1)基本组成单位是核苷酸,其组成成分中的五碳糖有两种:核糖、脱氧核糖(2)一个核苷酸是由一分子磷酸基团、一分子五碳糖和一分子含氮碱基组成(3)DNA 和RNA各含4种碱基,4种核苷酸 (4) 核酸中含有的碱基总数为:5 核苷酸数为 8五.实验:甲基绿+DNA=绿色 吡罗红+RNA=红色8%盐酸的作用:①改变细胞膜的通透性,加速染色剂进入细胞 ②使染色体中的DNA与蛋白质分离,有利于DNA和染色剂结合0.9%的NaCl的作用:保持动物细胞的细胞形态实验步骤:①制片 ②水解 ③冲洗 ④染色 ⑤观察结论:DNA主要存在于细胞核中,RNA主要存在于细胞质中少量DNA存在于线粒体,叶绿体中。原核细胞中DNA主要存在于拟核中,RNA主要存在于细胞质中六、核酸分子的多样性绝大多数生物的遗传信息就储存在DNA分子中,组成DNA分子的核苷酸虽然只有4种,但是核苷酸的排列顺序却是千变万化的。核苷酸的排列顺序就代表了遗传信息。生物的遗传物质是核酸(DNA或RNA)其中,主要遗传物质是DNA。第四节 细胞中的糖类和脂质1、糖类的化学元素组成及特点:元素组成( C,H.O),特点: 大多数糖H:O=2:12, 糖类的分类,分布及功能: 种类 分布 功能单糖 五碳糖 核糖(C5H10O4) 细胞中都有 组成RNA的成分 脱氧核糖(C5H10O5) 细胞中都有 组成DNA的成分 六碳糖(C6H12O6) 葡萄糖 细胞中都有 主要的能源物质 果糖 植物细胞中 提供能量 半乳糖 动物细胞中 提供能量二糖(C12H22O11) 麦芽糖 发芽的小麦、谷控中含量丰富 都能提供能量 蔗糖 甘蔗、甜菜中含量丰富 乳糖 人和动物的乳汁中含量丰富 多糖(C6H10O5)n 淀粉 植物粮食作物的种子、变态根或茎等储藏器官中 储存能量 纤维素 植物细胞的细胞壁中 支持保护细胞 肝糖原糖原肌糖原 动物的肝脏中 储存能量调节血糖 动物的肌肉组织中 储存能量3、单糖、二糖、多糖是怎么区分的 ?单糖:不能水解的糖,可被细胞直接吸收。二糖:由两分子的单糖脱水缩合而成。如麦芽糖由两个葡萄糖分子脱水缩合而成 , 蔗糖可 以水解为一分子果糖和一分子葡萄糖 , 乳糖可以水解为一分子葡萄糖和一分子半乳糖 .( 展示 课本 P31 2-11 〉 多糖:由许多的葡萄糖分子连接而成。如淀粉、纤维素、糖原,构成它们的基本单位都是葡萄糖。(P31)4、脂质的比较: 分类 元素 常见种类 功能脂质 脂肪 C、H、O ∕ 1、主要储能物质2、保温3、减少摩擦,缓冲和减压 磷脂 C、H、O(N、P) ∕ 细胞膜的主要成分 固醇 胆固醇 与细胞膜流动性有关 性激素 维持生物第二性征,促进生殖器官发育 维生素D 有利于Ca、P吸收第五节 细胞中的无机物一、有关水的知识要点 存在形式 含量 功能 联系水 自由水 约95% 1、良好溶剂2、参与多种化学反应3、运送养料和代谢废物 它们可相互转化;代谢旺盛时自由水含量增多,反之,含量减少。 结合水 约4.5% 细胞结构的重要组成成分 二、1.无机盐(绝大多数以离子形式存在)功能: ①、构成某些重要的化合物,如:叶绿素、血红蛋白等 ②、维持生物体的生命活动(如动物缺钙会抽搐) ③、维持酸碱平衡,调节渗透压。2.部分无机盐的作用 缺碘:地方性甲状腺肿大(大脖子病)、呆小症缺钙:抽搐、软骨病,儿童缺钙会得佝偻病,老年人会骨质疏松缺铁: 缺铁性贫血第三章 细胞的基本结构第一节 细胞膜------系统的边界一、细胞膜的成分:主要是脂质(约50%)和蛋白质(约40%),还有少量糖类(约2%--10%)二、细胞膜的功能: ①、将细胞与外界环境分隔开 ②、控制物质进出细胞 ③、进行细胞间的信息交流三、植物细胞还有细胞壁,主要成分是纤维素和果胶,对细胞有支持和保护作用;其性质是全透性的。第二节 细胞器----系统内的分工合作一、相关概念: 细 胞 质:在细胞膜以内、细胞核以外的原生质,叫做细胞质。细胞质主要包括细胞质基质和细胞器。细胞质基质:细胞质内呈液态的部分是基质。是细胞进行新陈代谢的主要场所。细 胞 器(一些膏原体):能的各种亚细胞结构的总称。二、八大细胞器的比较:1、线粒体:(呈粒状、棒状,具有双层膜,普遍存在于动、植物细胞中,内有少量DNA和RNA内膜突起形成嵴,内膜、基质和基粒中有许多种与有氧呼吸有关的酶),线粒体是细胞进行有氧呼吸的主要场所,生命活动所需要的能量,大约95%来自线粒体,是细胞的“动力车间”2、叶绿体:(呈扁平的椭球形或球形,具有双层膜,主要存在绿色植物叶肉细胞里),叶绿体是植物进行光合作用的细胞器,是植物细胞的“养料制造车间”和“能量转换站”,(含有叶绿素和类胡萝卜素,还有少量DNA和RNA,叶绿素分布在基粒片层的膜上。在片层结构的膜上和叶绿体内的基质中,含有光合作用需要的酶)。 3、核糖体:椭球形粒状小体,有些附着在内质网上,有些游离在细胞质基质中。是细胞内将氨基酸合成蛋白质的场所。4、内质网:由膜结构连接而成的网状物。是细胞内蛋白质合成和加工,以及脂质合成的“车间”5、高尔基体:在植物细胞中与细胞壁的形成有关,在动物细胞中与蛋白质(分泌蛋白)的加工、分类运输有关。 6、中心体:每个中心体含两个中心粒,呈垂直排列,存在于动物细胞和低等植物细胞,与细胞的有丝分裂有关。 7、液泡:主要存在于成熟植物细胞中,液泡内有细胞液。化学成分:有机酸、生物碱、糖类、蛋白质、无机盐、色素等。有维持细胞形态、储存养料、调节细胞渗透吸水的作用。 8、溶酶体:有“消化车间”之称,内含多种水解酶,能分解衰老、损伤的细胞器,吞噬并杀死侵入细胞的病毒或病菌。三、分泌蛋白的合成和运输: 核糖体(合成肽链)→内质网(加工成具有一定空间结构的蛋白质)→高尔基体(进一步修饰加工)→囊泡→细胞膜→细胞外四、生物膜系统的组成:包括细胞器膜、细胞膜和核膜等。第三节 细胞核----系统的控制中心一、细胞核的功能:是遗传信息库(遗传物质储存和复制的场所),是细胞代谢和遗传的控制中心;二、细胞核的结构: 1、染色质:由DNA和蛋白质组成,染色质和染色体是同样物质在细胞不同时期的两种存在状态。 2、核 膜:双层膜,把核内物质与细胞质分开。 3、核 仁:与某种RNA的合成以及核糖体的形成有关。 4、核 孔:实现细胞核与细胞质之间的物质交换和信息交流。第四章 细胞的物质输入和输出第一节 物质跨膜运输的实例一、渗透作用:水分子(溶剂分子)通过半透膜的扩散作用。二、原生质层:细胞膜和液泡膜以及两层膜之间的细胞质。三、发生渗透作用的条件: 1、具有半透膜 2、膜两侧有浓度差四、细胞的吸水和失水: 外界溶液浓度>细胞内溶液浓度→细胞失水 外界溶液浓度<细胞内溶液浓度→细胞吸水第二节 生物膜的流动镶嵌模型一、细胞膜结构: 磷脂 蛋白质 糖类↓ ↓ ↓磷脂双分子层 “镶嵌蛋白” 糖被(与细胞识别有关)(膜基本支架)二、结构特点:具有一定的流动性 细胞膜(生物膜) 功能特点:选择透过性第三节 物质跨膜运输的方式一、相关概念:自由扩散:物质通过简单的扩散作用进出细胞。 协助扩散:进出细胞的物质要借助载体蛋白的扩散。 主动运输:物质从低浓度一侧运输到高浓度一侧,需要载体蛋白的协助,同时还需要消耗细胞内化学反应所释放的能量。二、 自由扩散、协助扩散和主动运输的比较:比较项目 运输方向 是否要载体 是否消耗能量 代表例子自由扩散 高浓度→低浓度 不需要 不消耗 O2、CO2、H2O、乙醇、甘油等协助扩散 高浓度→低浓度 需要 不消耗 葡萄糖进入红细胞等主动运输 低浓度→高浓度 需要 消耗 氨基酸、各种离子等三、离子和小分子物质主要以被动运输(自由扩散、协助扩散)和主动运输的方式进出细胞;大分子和颗粒物质进出细胞的主要方式是胞吞作用和胞吐作用。第五章 细胞的能量供应和利用第一节 降低化学反应活化能的酶一、相关概念: 新陈代谢:是活细胞中全部化学反应的总称,是生物与非生物最根本的区别,是生物体进行一切生命活动的基础。 细胞代谢:细胞中每时每刻都进行着的许多化学反应。 酶:是活细胞(来源)所产生的具有催化作用(功能:降低化学反应活化能,提高化学反应速率)的一类有机物。 活 化 能:分子从常态转变为容易发生化学反应的活跃状态所需要的能量。二、酶的发现:略三、酶的本质:大多数酶的化学本质是蛋白质(合成酶的场所主要是核糖体,水解酶的酶是蛋白酶),也有少数是RNA。四、酶的特性: ①、高效性:催化效率比无机催化剂高许多。 ②、专一性:每种酶只能催化一种或一类化合物的化学反应。③、酶需要较温和的作用条件:在最适宜的温度和pH下,酶的活性最高。温度和pH偏高和偏低,酶的活性都会明显降低。第二节 细胞的能量“通货”-----ATP一、ATP的结构简式:ATP是三磷酸腺苷的英文缩写,结构简式:A-P~P~P,其中:A代表腺苷,P代表磷酸基团,~代表高能磷酸键,-代表普通化学键。注意:ATP的分子中的高能磷酸键中储存着大量的能量,所以ATP被称为高能化合物。这种高能化合物化学性质不稳定,在水解时,由于高能磷酸键的断裂,释放出大量的能量。二、ATP与ADP的转化: 酶 第三节 ATP的主要来源------细胞呼吸一、相关概念:1、呼吸作用(也叫细胞呼吸):指有机物在细胞内经过一系列的氧化分解,最终生成二氧化碳或其它产物,释放出能量并生成ATP的过程。根据是否有氧参与,分为:有氧呼吸和无氧呼吸 2、有氧呼吸:指细胞在有氧的参与下,通过多种酶的催化作用下,把葡萄糖等有机物彻底氧化分解,产生二氧化碳和水,释放出大量能量,生成ATP的过程。3、无氧呼吸:一般是指细胞在无氧的条件下,通过酶的催化作用,把葡萄糖等有机物分解为不彻底的氧化产物(酒精、CO2或乳酸),同时释放出少量能量的过程。4、发酵:微生物(如:酵母菌、乳酸菌)的无氧呼吸。二、有氧呼吸的总反应式: C6H12O6 + 6O2 6CO2 + 6H2O + 能量三、无氧呼吸的总反应式: C6H12O6 2C2H5OH(酒精)+ 2CO2 + 少量能量 或 C6H12O6 2C3H6O3(乳酸)+ 少量能量四、有氧呼吸过程(主要在线粒体中进行): 场所 发生反应 产物第一阶段 细胞质基质 丙酮酸、[H]、释放少量能量,形成少量ATP第二阶段 线粒体基质 CO2、[H]、释放少量能量,形成少量ATP第三阶段 线粒体内膜 生成H2O、释放大量能量,形成大量ATP五、有氧呼吸与无氧呼吸的比较:呼吸方式 有氧呼吸 无氧呼吸不同点 场所 细胞质基质,线粒体基质、内膜 细胞质基质 条件 氧气、多种酶 无氧气参与、多种酶 物质变化 葡萄糖彻底分解,产生CO2和H2O 葡萄糖分解不彻底,生成乳酸或酒精等 能量变化 释放大量能量(1161kJ被利用,其余以热能散失),形成大量ATP 释放少量能量,形成少量ATP六、影响呼吸速率的外界因素: 1、温度:温度通过影响细胞内与呼吸作用有关的酶的活性来影响细胞的呼吸作用。温度过低或过高都会影响细胞正常的呼吸作用。在一定温度范围内,温度越低,,细胞呼吸越弱;温度越高,细胞呼吸越强。 2、氧气:氧气充足,则无氧呼吸将受抑制;氧气不足,则有氧呼吸将会减弱或受抑制。3、水分:一般来说,细胞水分充足,呼吸作用将增强。但陆生植物根部如长时间受水浸没,根部缺氧,进行无氧呼吸,产生过多酒精,可使根部细胞坏死。4、CO2:环境CO2浓度提高,将抑制细胞呼吸,可用此原理来贮藏水果和蔬菜。七、呼吸作用在生产上的应用:1、作物栽培时,要有适当措施保证根的正常呼吸,如疏松土壤等。2、粮油种子贮藏时,要风干、降温,降低氧气含量,则能抑制呼吸作用,减少有机物消耗。3、水果、蔬菜保鲜时,要低温或降低氧气含量及增加二氧化碳浓度,抑制呼吸作用。第四节 能量之源----光与光合作用一、相关概念: 1、光合作用:绿色植物通过叶绿体,利用光能,把二氧化碳和水转化成储存着能量的有机物,并释放出氧气的过程二、光合色素(在类囊体的薄膜上): 叶绿素a (蓝绿色) 叶绿素 主要吸收红光和蓝紫光 叶绿素b (黄绿色) 色素 胡萝卜素 (橙黄色) 类胡萝卜素 主要吸收蓝紫光 叶黄素 (黄色)三、光合作用的探究历程:略四、叶绿体的功能:叶绿体是进行光合作用的场所。在类囊体的薄膜上分布着具有吸收光能的光合色素,在类囊体的薄膜上和叶绿体的基质中含有许多光合作用所必需的酶。五、影响光合作用的外界因素主要有: 1、光照强度:在一定范围内,光合速率随光照强度的增强而加快,超过光饱合点,光合速率反而会下降。 2、温度:温度可影响酶的活性。 3、二氧化碳浓度:在一定范围内,光合速率随二氧化碳浓度的增加而加快,达到一定程度后,光合速率维持在一定的水平,不再增加。 4、水:光合作用的原料之一,缺少时光合速率下降。六、光合作用的应用:1、适当提高光照强度。 2、延长光合作用的时间。 3、增加光合作用的面积------合理密植,间作套种。 4、温室大棚用无色透明玻璃。 5、温室栽培植物时,白天适当提高温度,晚上适当降温。 6、温室栽培多施有机肥或放置干冰,提高二氧化碳浓度。七、光合作用的过程:光反应阶段 条件 光、色素、酶 场所 在类囊体的薄膜上 物质变化 水的分解:H2O → [H] + O2↑ ATP的生成:ADP + Pi → ATP 能量变化 光能→ATP中的活跃化学能暗反应阶段 条件 酶、ATP、[H] 场所 叶绿体基质 物质变化 CO2的固定:CO2 + C5 → 2C3C3的还原: C3 + [H] → (CH2O) 能量变化 ATP中的活跃化学能→(CH2O)中的稳定化学能总反应式 CO2 + H2O O2 + (CH2O)

328 评论(11)

麦兜的秒杀季

cellule意思是细胞,是阴性名词。细胞 (英文名:cell)并没有统一的定义,比较普遍的提法是:细胞是生物体基本的结构和功能单位。已知除病毒之外的所有生物均由细胞所组成,但病毒生命活动也必须在细胞中才能体现。一般来说,细菌等绝大部分微生物以及原生动物由一个细胞组成,即单细胞生物,高等植物与高等动物则是多细胞生物。细胞可分为原核细胞、真核细胞两类,但也有人提出应分为三类,即把原属于原核细胞的古核细胞独立出来作为与之并列的一类。研究细胞的学科称为细胞生物学。细胞体形极微,在显微镜下始能窥见,形状多种多样。主要由细胞核与细胞质构成,表面有细胞膜。高等植物细胞膜外有细胞壁,细胞质中常有质体,体内有叶绿体和液泡,还有线粒体。动物细胞无细胞壁,细胞质中常有中心体,而高等植物细胞中则无。细胞有运动、营养和繁殖等机能。细胞壁分类在细菌、真菌、植物的生物,其组成的细胞都具有细胞壁(Cell Wall),而原生生物则有一部分的生物体具有此构造,但是动物没有。植物细胞壁主要成分是纤维素,经过有系统的编织形成网状的外壁。可分为中胶层、初生细胞壁、次生细胞壁。中胶层是植物细胞刚分裂完成的子细胞之间,最先形成的间隔,主要成份是果胶质(一种多糖类),随后在中胶层两侧形成初生细胞壁,初生细胞壁主要由果胶质、木质素和少量的蛋白质构成。次生细胞壁主要由纤维素组成的纤维排列而成,如同一条一条的线以接近直角的方式排列,再以木质素等多糖类黏接。真菌细胞壁则是由几丁质、纤维素等多糖类组成,其中几丁质是含有碳水化合物和氨,性柔软,有弹性,与钙盐混杂则硬化,形成节肢动物的外骨骼。几丁质不溶于水、酒精、弱酸和弱碱等液体,有保护功能。细菌细胞壁组成以肽聚糖为主。细胞细胞膜细胞壁的内侧紧贴着一层极薄的膜,叫做细胞膜(Cell Membrane)。这层由蛋白质分子和磷脂双分子层组成的薄膜,水和氧气等小分子物质能够自由通过,而某些离子和大分子物质则不能自由通过。因此,它除了起着保护细胞内部的作用以外,还具有控制物质进出细胞的作用:既不让有用物质任意地渗出细胞,也不让有害物质轻易地进入细胞。此外,它能进行细胞间的信息交流。细胞膜在光学显微镜下不易分辨。用电子显微镜观察,可以知道细胞膜主要由蛋白质分子和脂类分子构成。在细胞膜的中间,是磷脂双分子层,这是细胞膜的基本骨架。在磷脂双分子层的外侧和内侧,有许多球形的蛋白质分子,它们以不同深度镶嵌在磷脂分子层中,或者覆盖在磷脂分子层的表面。这些磷脂分子和蛋白质分子大都是可以流动的,可以说,细胞膜具有一定的流动性。细胞膜的这种结构特点,对于它完成各种生理功能是非常重要的。[4] 物质跨膜运输的方式分为被动运输和主动运输两种。(1)协助扩散被动运输,是顺着膜两侧浓度梯度扩散,即由高浓度向低浓度。分为自由扩散和协助扩散。①自由扩散:物质通过简单的扩散作用进入细胞。细胞膜两侧的浓度差以及扩散的物质的性质(如根据相似相溶原理,脂溶性物质更容易进出细胞)对自由扩散的速率有影响,常见的能进行自由扩散的物质有氧气、二氧化碳、甘油、乙醇、苯、尿素、胆固醇、水、氨等。②协助扩散:进出细胞的物质借助载体蛋白扩散。细胞膜两侧的浓度差以及载体的种类和数目对协助扩散的速率有影响。红细胞吸收葡萄糖是依靠协助扩散。(2)主动运输:物质从低浓度一侧运输到高浓度一侧,需要载体蛋白的协助,同时还需要消耗细胞内化学反应所释放的能量。主动运输保证了活细胞能够按照生命活动的需要,主动选择吸收所需要的营养物质,排出代谢废物和对细胞有害的物质。各种离子由低浓度到高浓度过膜都是依靠主动运输。能进行跨膜运输的都是离子和小分子,当大分子进出细胞时,包裹大分子物质的囊泡从细胞膜上分离或者与细胞膜融合(胞吞和胞吐),大分子不需跨膜便可进出细胞。 [5] 细胞细胞质细胞膜包着的黏稠透明的物质,叫做细胞质(Cytoplasm)。在细胞质中还可看到一些带折光性的颗粒,这些颗粒多数具有一定的结构和功能,类似生物体的各种器官,因此叫做细胞器。例如,在绿色植物的叶肉细胞中,能看到许多绿色的颗粒,这就是一种细胞器,叫做叶绿体。绿色植物的光合作用就是在叶绿体中进行的。在细胞质中,往往还能看到一个或几个液泡,其中充满着液体,叫做细胞液。在成熟的植物细胞中,液泡合并为一个中央大液泡,其体积占去整个细胞的大半。细胞质被挤压为一层。细胞膜以及液泡膜和原生质层两层膜之间的细胞质称为原生质层。植物细胞的原生质层相当于一层半透膜。当细胞液浓度小于外界浓度时,细胞液中的水分就透过原生质层进入外界溶液中,使细胞壁和原生质层都出现一定程度的收缩。由于原生质层比细胞壁的伸缩性大,当细胞不断失水时,原生质层与细胞壁分离,也就是发生了质壁分离。当细胞液浓度大于外界溶液浓度时,外界溶液中的水分透过原生质层进入细胞液中使原生质层复原,逐渐发生质壁分离的复原。细胞质不是凝固静止的,而是缓缓地运动着的。在只具有一个中央液泡的细胞内,细胞质往往围绕液泡循环流动,这样便促进了细胞内物质的转运,也加强了细胞器之间的相互联系。细胞质运动是一种消耗能量的生命现象。细胞的生命活动越旺盛,细胞质流动越快,反之,则越慢。细胞死亡后,其细胞质的流动也就停止了。细胞骨架是指真核细胞中蛋白纤维的网络结构,由位于细胞质中的微丝、微管和中间纤维构成。微丝确定细胞表面特征,使细胞能够运动和收缩。微管确定膜性细胞器的位置和作为膜泡运输的轨道。中间纤维使细胞具有张力和抗剪切力。细胞骨架不仅在维持细胞形态、承受外力、保持细胞内部结构有序性方面起重要作用,而且还参与许多重要的生命活动,如:在细胞分裂中细胞骨架牵引染色体分离;在细胞物质运输中,各类小泡和细胞器可沿着细胞骨架定向运转。细胞骨架在20世纪60年代后期才被发现。主要因为早期电镜制样采用低温(0-4℃)固定,而细胞骨架会在低温下解聚。直到采用戊二醛常温固定,人们才逐渐认识到细胞骨架的客观存在。[细胞器已发生质壁分离的细胞细胞中还有一些细胞器,它们具有不同的结构,执行着不同的功能,共同完成细胞的生命活动。这些细胞器的结构需用电子显微镜观察。在电镜下观察到的细胞结构称为亚显微结构。①线粒体线粒体(Mitochondria/Mitochonrion)线粒体是一些线状、小杆状或颗粒状的结构,在活细胞中可用詹纳斯绿(Janus green)染成蓝绿色。在电子显微镜下观察,线粒体表面是由双层膜构成的。内膜向内形成一些隔,称为线粒体嵴(Cristae)。在线粒体内有丰富的酶系统。线粒体是细胞呼吸的中心,它是生物有机体借氧化作用产生能量的一个主要机构,它能将营养物质(如葡萄糖、脂肪酸、氨基酸等)氧化产生能量,储存在ATP(三磷酸腺苷)的高能磷酸键上,供给细胞其他生理活动的需要,因此有人说线粒体是细胞的“动力工厂”。②叶绿体紫色洋葱鳞片叶叶绿体(Chloroplasts)是绿色植物细胞中重要的细胞器,其主要功能是进行光合作用。叶绿体由双层膜、基粒(类囊体)和基质三部分构成。类囊体是一种扁平的小囊状结构,在类囊体薄膜上,有进行光合作用必需的色素和酶。许多类囊体叠合而成基粒。基粒之间充满着基质,其中含有与光合作用有关的酶。基质中还含有DNA。[7] ③内质网内质网(Endoplasmic Reticulum)是细胞质中由膜构成的网状管道系统广泛的分布在细胞质基质内。它与细胞膜及核膜相通连,对细胞内蛋白质及脂质等物质的合成和运输起着重要作用。 内质网根据其表面有无附着核糖体可分为粗面内质网和滑面内质网。粗面内质网表面有附着核糖体,具有运输蛋白质的功能,滑面内质网内含许多酶,与糖脂类和固醇类激素的合成与分泌有关。④高尔基复合体高尔基复合体(Golgi Apparatus/Golgi Body)位于细胞核附近的网状囊泡,是细胞内的运输和加工系统。能将粗面内质网运输的蛋白质进行加工、浓缩和包装成分泌泡和溶酶体。⑤核糖体核糖体(Ribosomes)是椭球形的粒状小体,有些附着在内质网膜的外表面(供给膜上及膜外蛋白质),有些游离在细胞质基质中(供给膜内蛋白质,不经过高尔基体,直接在细胞质基质内的酶的作用下形成空间构形),是合成蛋白质的重要基地。⑥中心体中心体(Centrosome)存在于动物细胞和某些低等植物细胞中,因为它的位置靠近细胞核,所以叫中心体。每个中心体由两个互相垂直排列的中心粒及其周围的物质组成,动物细胞的中心体与有丝分裂有密切关系。中心粒(Centriole)这种细胞器的位置是固定的,具有极性的结构。在间期细胞中,经固定、染色后所显示的中心粒仅仅是1或2个小颗粒。而在电子显微镜下观察,中心粒是一个柱状体,长度约为0.3μm~0.5μm,直径约为0.15μm,它是由9组小管状的亚单位组成的,每个亚单位一般由3个微管构成。这些管的排列方向与柱状体的纵轴平行。⑦液泡液泡(Vacuole)是植物细胞中的泡状结构。成熟的植物细胞中的液泡很大,可占整个细胞体积的90%。液泡的表面有液泡膜。液泡内有细胞液,其中含有糖类、无机盐、色素和蛋白质等物质,可以达到很高的浓度。因此,它对细胞内的环境起着调节作用,可以使细胞保持一定的渗透压,保持膨胀的状态。动物细胞也同样有小液泡。⑧溶酶体囊状小体或小泡,内含多种水解酶,具有自溶和异溶作用。自溶作用是指溶酶体消化分解细胞内损坏和衰老的细胞器的过程,异溶作用是指消化和分解被细胞吞噬的病原微生物及其细胞碎片的过程。溶酶体是细胞内具有单层膜囊状结构的细胞器。其内含有很多种水解酶类,能够分解很多物质。⑨微丝及微管在细胞质内除上述结构外,还有微丝(Microfilament)和微管(Microtubule)等结构,它们的主要机能不只是对细胞起骨架支持作用,以维持细胞的形状,如在红血细胞微管成束平行排列于盘形细胞的周缘,又如上皮细胞微绒毛中的微丝;它们也参加细胞的运动,如有丝分裂的纺锤丝,以及纤毛、鞭毛的微管。此外,细胞质内还有各种内含物,如糖原、脂类、结晶、色素等。[8] 细胞细胞核细胞质里含有一个近似球形的细胞核(Nucleus),是由更加黏稠的物质构成的。细胞核通常位于细胞的中央,成熟的植物细胞的细胞核,往往被中央液泡推挤到细胞的边缘。细胞核中有一种物质,易被洋红、苏木精、甲基绿、龙胆紫溶液等碱性染料染成深色,叫做染色质(Chromatin)。生物体用于传种接代的物质即遗传物质,就在染色质上。当细胞进行有丝分裂时,染色质在分裂间期螺旋缠绕成染色体。多数细胞只有一个细胞核,有些细胞含有两个或多个细胞核,如肌细胞、肝细胞等。细胞核可分为核膜、染色质、核液和核仁四部分。核膜与内质网相通连,染色质位于核膜与核仁之间。染色质主要由蛋白质和DNA组成。DNA是一种有机物大分子,又叫脱氧核糖核酸,是生物的遗传物质。在有丝分裂时,染色体复制,DNA也随之复制为两份,平均分配到两个子细胞中,使得后代细胞染色体数目恒定,从而保证了后代遗传特性的稳定。还有RNA,RNA是DNA在复制时形成的单链,它传递信息,控制合成蛋白质,其中有转移核糖核酸(tRNA)、信使核糖核酸(mRNA)和核糖体核糖核酸(rRNA)。细胞核的机能是保存遗传物质,控制生化合成和细胞代谢,决定细胞或机体的性状表现,把遗传物质从细胞(或个体)一代一代传下去。但细胞核不是孤立的起作用,而是和细胞质相互作用、相互依存而表现出细胞统一的生命过程。细胞核控制细胞质;细胞质对细胞的分化、发育和遗传也有重要的作用。希望我能帮助你解疑释惑。

207 评论(15)

相关问答