kasumi0330
Introduction --------------------------------------------------------------------“神经网络”这个词实际是来自于生物学,而我们所指的神经网络正确的名称应该是“人工神经网络(ANNs)”。在本文,我会同时使用这两个互换的术语。一个真正的神经网络是由数个至数十亿个被称为神经元的细胞(组成我们大脑的微小细胞)所组成,它们以不同方式连接而型成网络。人工神经网络就是尝试模拟这种生物学上的体系结构及其操作。在这里有一个难题:我们对生物学上的神经网络知道的不多!因此,不同类型之间的神经网络体系结构有很大的不同,我们所知道的只是神经元基本的结构。The neuron ----------------------------------------------------------------------虽然已经确认在我们的大脑中有大约50至500种不同的神经元,但它们大部份都是基于基本神经元的特别细胞。基本神经元包含有synapses、soma、axon及dendrites。Synapses负责神经元之间的连接,它们不是直接物理上连接的,而是它们之间有一个很小的空隙允许电子讯号从一个神经元跳到另一个神经元。然后这些电子讯号会交给soma处理及以其内部电子讯号将处理结果传递给axon。而axon会将这些讯号分发给dendrites。最后,dendrites带着这些讯号再交给其它的synapses,再继续下一个循环。如同生物学上的基本神经元,人工的神经网络也有基本的神经元。每个神经元有特定数量的输入,也会为每个神经元设定权重(weight)。权重是对所输入的资料的重要性的一个指标。然后,神经元会计算出权重合计值(net value),而权重合计值就是将所有输入乘以它们的权重的合计。每个神经元都有它们各自的临界值(threshold),而当权重合计值大于临界值时,神经元会输出1。相反,则输出0。最后,输出会被传送给与该神经元连接的其它神经元继续剩余的计算。Learning ----------------------------------------------------------------------正如上述所写,问题的核心是权重及临界值是该如何设定的呢?世界上有很多不同的训练方式,就如网络类型一样多。但有些比较出名的包括back-propagation, delta rule及Kohonen训练模式。由于结构体系的不同,训练的规则也不相同,但大部份的规则可以被分为二大类别 - 监管的及非监管的。监管方式的训练规则需要“教师”告诉他们特定的输入应该作出怎样的输出。然后训练规则会调整所有需要的权重值(这是网络中是非常复杂的),而整个过程会重头开始直至数据可以被网络正确的分析出来。监管方式的训练模式包括有back-propagation及delta rule。非监管方式的规则无需教师,因为他们所产生的输出会被进一步评估。Architecture ----------------------------------------------------------------------在神经网络中,遵守明确的规则一词是最“模糊不清”的。因为有太多不同种类的网络,由简单的布尔网络(Perceptrons),至复杂的自我调整网络(Kohonen),至热动态性网络模型(Boltzmann machines)!而这些,都遵守一个网络体系结构的标准。一个网络包括有多个神经元“层”,输入层、隐蔽层及输出层。输入层负责接收输入及分发到隐蔽层(因为用户看不见这些层,所以见做隐蔽层)。这些隐蔽层负责所需的计算及输出结果给输出层,而用户则可以看到最终结果。现在,为免混淆,不会在这里更深入的探讨体系结构这一话题。对于不同神经网络的更多详细资料可以看Generation5 essays尽管我们讨论过神经元、训练及体系结构,但我们还不清楚神经网络实际做些什么。The Function of ANNs ----------------------------------------------------------------------神经网络被设计为与图案一起工作 - 它们可以被分为分类式或联想式。分类式网络可以接受一组数,然后将其分类。例如ONR程序接受一个数字的影象而输出这个数字。或者PPDA32程序接受一个坐标而将它分类成A类或B类(类别是由所提供的训练决定的)。更多实际用途可以看Applications in the Military中的军事雷达,该雷达可以分别出车辆或树。联想模式接受一组数而输出另一组。例如HIR程序接受一个‘脏’图像而输出一个它所学过而最接近的一个图像。联想模式更可应用于复杂的应用程序,如签名、面部、指纹识别等。The Ups and Downs of Neural Networks ----------------------------------------------------------------------神经网络在这个领域中有很多优点,使得它越来越流行。它在类型分类/识别方面非常出色。神经网络可以处理例外及不正常的输入数据,这对于很多系统都很重要(例如雷达及声波定位系统)。很多神经网络都是模仿生物神经网络的,即是他们仿照大脑的运作方式工作。神经网络也得助于神经系统科学的发展,使它可以像人类一样准确地辨别物件而有电脑的速度!前途是光明的,但现在...是的,神经网络也有些不好的地方。这通常都是因为缺乏足够强大的硬件。神经网络的力量源自于以并行方式处理资讯,即是同时处理多项数据。因此,要一个串行的机器模拟并行处理是非常耗时的。神经网络的另一个问题是对某一个问题构建网络所定义的条件不足 - 有太多因素需要考虑:训练的算法、体系结构、每层的神经元个数、有多少层、数据的表现等,还有其它更多因素。因此,随着时间越来越重要,大部份公司不可能负担重复的开发神经网络去有效地解决问题。NN 神经网络,Neural Network ANNs 人工神经网络,Artificial Neural Networks neurons 神经元 synapses 神经键 self-organizing networks 自我调整网络 networks modelling thermodynamic properties 热动态性网络模型 英文翻译Introduction ---------------------------------------------------------------------- Neural network is a new technology in the field of fashion vocabulary. Many people have heard of the word, but few people really understand what it is. The purpose of this paper is to introduce all the basic neural network functions, including its general structure, related terms, types and applications."Neural network" actually came from biology, and neural networks we refer the correct name should be "Artificial Neural Networks (ANNs)". In this article, I will also use the two interchangeable terms. A real neural network is a few to a few billion cells called neurons (composed of tiny cells in our brains) are composed of, they are different ways to connect and type into the network. Artificial neural network is trying to model this biological system structure and its operation. There is a problem here: we biological neural networks do not know much! Thus, between different types of neural network architecture is very different, we know only the basic structure of neurons. The neuron ---------------------------------------------------------------------- While already recognized in our brain, about 50 to 500 kinds of different neurons, but most of them are based on special cells in the basic neuron. Contains the basic neural synapses, soma, axon and dendrites. Synapses between neurons responsible for the connection, they are not directly physically connected, but they have a very small gap between to allow electronic signals from one neuron to another neuron. Then the electrical signals to the soma will be an internal electronic signal processing and its processing result will pass axon. The axon of these signals will be distributed to dendrites. Finally, dendrites with these signals and then to the other synapses, and then continue to the next cycle. As a basic biological neurons, artificial neural networks have basic neurons. Each neuron has a specific number of inputs, will be set for each neuron weight (weight). Weight is the importance of the information entered an indicator. Then, neurons calculates the weight of the total value (net value), while the total weight of all the input value is multiplied by the total of their weights. Each neuron has their own threshold (threshold), while the power is greater than the critical value of the total value of weight, the neuron will output 1. On the contrary, the output 0. Finally, the output can be transmitted to the neuronal connections with other neurons to the remaining calculations. Learning ---------------------------------------------------------------------- As written above, at issue is the critical value of the weight and how to set it? The world has many different training methods, as much as the network type. But some well-known, including back-propagation, delta rule and Kohonen training mode. Because of different structural systems, training is not the same rules, but most of the rules can be divided into two broad categories - regulatory and non-regulated. Supervising the training rules need to be "teachers" tell them how a particular input to the output should be. Then the training rule to adjust the weight of all the needs of value (this is a very complex network), and the whole process would start again until the correct data can be analyzed by the network. Regulatory approach of the training model includes back-propagation and the delta rule. The rules of non-regulatory approach without teachers, because they produce the output will be further evaluated. Architecture ---------------------------------------------------------------------- In the neural network, comply with the rules clear word is the most "obscure" the. Because there are too many different types of networks, from simple Boolean networks (Perceptrons), to the complex network of self-adjustment (Kohonen), to the thermal dynamic network model (Boltzmann machines)! These have to comply with the standards of a network architecture. A network including multiple neurons, "layer", the input layer, hidden layer and output layer. Input layer to receive input and distribute to the hidden layer (because the user can not see the layers, so do see the hidden layer). The hidden layer is responsible for the necessary calculations and output to the output layer, the user can see the final result. Now, to avoid confusion, would not be here more in-depth study architecture talking about it. Different neural networks for more detailed information can be read Generation5 essays, including a multiple neural network "layer", the input layer, hidden layer and output layer. Input layer to receive input and distribute to the hidden layer (because the user can not see the layers, so do see the hidden layer). The hidden layer is responsible for the necessary calculations and output to the output layer, the user can see the final result. Now, to avoid confusion, would not be here more in-depth study architecture talking about it. Different neural networks for more detailed information can be seen Generation5 essays. Although we discussed the neurons, training and architecture, but we do not know what the actual neural network. The Function of ANNs ---------------------------------------------------------------------- Neural networks are designed to work with patterns - they can be divided into two categories-type or association type. Category-type network can accept a few, and then classified. For example, ONR program accepts a number of the image and the output figure. Or PPDA32 program accepts a coordinate and to classify it as Class A or B (type of training provided by the decision). More practical use can be seen Applications in the Military in the military radars, the radar could pick out a vehicle or tree. Lenovo model to accept a group of numbers and the output of another group. HIR procedures such as acceptance of a 'dirty' image and the output of a learned and the closest it an image. Lenovo model also can be used in complex applications such as signature, face, fingerprint recognition. The Ups and Downs of Neural Networks ---------------------------------------------------------------------- Neural network in this area has many advantages, making it more popular. It is in the type classification / recognition is very good. Neural networks can handle the exception and not the normal input data, which are important for many systems (such as radar and sonar systems). Many neural networks are mimic biological neural networks, that is their mode of operation modeled on the work of the brain. Neural networks also have to help the development of neuroscience, it can, like humans, accurate identification of objects and the speed of computers! The future is bright, but now ... Yes, the neural network are also some bad points. This is usually because of lack of sufficiently powerful hardware. Power derived from the neural network to process information in parallel, that is, a number of data simultaneously. Therefore, to simulate a serial parallel processing machines is very time-consuming. Another problem with neural networks is a problem in building a network of defined conditions are not - there are too many factors to consider: training algorithms, architecture, number of neurons in each layer, the number of layers, data show, etc. There are other additional factors. Therefore, more and more important over time, most companies can not afford to repeat the development of neural network to effectively solve the problem.不知道是不是 我随便找的
蛋蛋妹妹
很多人认为深度学习很枯燥,大部分情况是因为对深度学习的学术词语,特别是专有名词很困惑,即便对相关从业者,亦很难深入浅出地解释这些词语的含义。 相信读过此文的圈友,会对深度学习有个全新的认识,机器人圈希望可以为圈友的深度学习之路起到一些辅助作用。 人工智能,深度学习,机器学习—无论你在做什么,如果你对它不是很了解的话—去学习它。否则的话不用三年你就跟不上时代的潮流了。——马克.库班 马克.库班的这个观点可能听起来很极端——但是它所传达的信息是完全正确的! 我们正处于一场革命的旋涡之中——一场由大数据和计算能力引起的革命。 只需要一分钟,我们来想象一下,在20世纪初,如果一个人不了解电力,他/她会觉得如何?你会习惯于以某种特定的方式来做事情,日复一日,年复一年,而你周围的一切事情都在发生变化,一件需要很多人才能完成的事情仅依靠一个人和电力就可以轻松搞定,而我们今天正以机器学习和深度学习的方式在经历一场相似的旅程。 所以,如果你还没有探索或理解深度学习的神奇力量——那你应该从今天就开始进入这一领域。 与主题相关的术语 为了帮助你了解各种术语,我已经将它们分成3组。如果你正在寻找特定术语,你可以跳到该部分。如果你是这个领域的新手,那我建议你按照我写的顺序来通读它们。 1.神经网络基础(Basics of Neural Networks) ——常用激活函数(Common Activation Functions) 2.卷积神经网络(Convolutional Neural Networks) 3.循环神经网络(Recurrent Neural Networks) 神经网络基础 1)神经元(Neuron) ——就像形成我们大脑基本元素的神经元一样,神经元形成神经网络的基本结构。想象一下,当我们得到新信息时我们该怎么做。当我们获取信息时,我们一般会处理它,然后生成一个输出。类似地,在神经网络的情况下,神经元接收输入,处理它并产生输出,而这个输出被发送到其他神经元用于进一步处理,或者作为最终输出进行输出。 2)权重(Weights) ——当输入进入神经元时,它会乘以一个权重。例如,如果一个神经元有两个输入,则每个输入将具有分配给它的一个关联权重。我们随机初始化权重,并在模型训练过程中更新这些权重。训练后的神经网络对其输入赋予较高的权重,这是它认为与不那么重要的输入相比更为重要的输入。为零的权重则表示特定的特征是微不足道的。 让我们假设输入为a,并且与其相关联的权重为W1,那么在通过节点之后,输入变为a * W1 3)偏差(Bias) ——除了权重之外,另一个被应用于输入的线性分量被称为偏差。它被加到权重与输入相乘的结果中。基本上添加偏差的目的是来改变权重与输入相乘所得结果的范围的。添加偏差后,结果将看起来像a* W1 +偏差。这是输入变换的最终线性分量。 4)激活函数(Activation Function) ——一旦将线性分量应用于输入,将会需要应用一个非线性函数。这通过将激活函数应用于线性组合来完成。激活函数将输入信号转换为输出信号。应用激活函数后的输出看起来像f(a * W1 + b),其中f()就是激活函数。 在下图中,我们将“n”个输入给定为X1到Xn而与其相应的权重为Wk1到Wkn。我们有一个给定值为bk的偏差。权重首先乘以与其对应的输入,然后与偏差加在一起。而这个值叫做u。 U =ΣW* X+ b 激活函数被应用于u,即 f(u),并且我们会从神经元接收最终输出,如yk = f(u)。 常用的激活函数 最常用的激活函数就是Sigmoid,ReLU和softmax a)Sigmoid ——最常用的激活函数之一是Sigmoid,它被定义为: Sigmoid变换产生一个值为0到1之间更平滑的范围。我们可能需要观察在输入值略有变化时输出值中发生的变化。光滑的曲线使我们能够做到这一点,因此优于阶跃函数。 b)ReLU(整流线性单位) ——与Sigmoid函数不同的是,最近的网络更喜欢使用ReLu激活函数来处理隐藏层。该函数定义为: 当X>0时,函数的输出值为X;当X<=0时,输出值为0。函数图如下图所示: 使用ReLU函数的最主要的好处是对于大于0的所有输入来说,它都有一个不变的导数值。常数导数值有助于网络训练进行得更快。 c) Softmax ——Softmax激活函数通常用于输出层,用于分类问题。它与sigmoid函数是很类似的,唯一的区别就是输出被归一化为总和为1。Sigmoid函数将发挥作用以防我们有一个二进制输出,但是如果我们有一个多类分类问题,softmax函数使为每个类分配值这种操作变得相当简单,而这可以将其解释为概率。 以这种方式来操作的话,我们很容易看到——假设你正在尝试识别一个可能看起来像8的6。该函数将为每个数字分配值如下。我们可以很容易地看出,最高概率被分配给6,而下一个最高概率分配给8,依此类推…… 5)神经网络(Neural Network) ——神经网络构成了深度学习的支柱。神经网络的目标是找到一个未知函数的近似值。它由相互联系的神经元形成。这些神经元具有权重和在网络训练期间根据错误来进行更新的偏差。激活函数将非线性变换置于线性组合,而这个线性组合稍后会生成输出。激活的神经元的组合会给出输出值。 一个很好的神经网络定义—— “神经网络由许多相互关联的概念化的人造神经元组成,它们之间传递相互数据,并且具有根据网络”经验“调整的相关权重。神经元具有激活阈值,如果通过其相关权重的组合和传递给他们的数据满足这个阈值的话,其将被解雇;发射神经元的组合导致“学习”。 6)输入/输出/隐藏层(Input / Output / Hidden Layer) ——正如它们名字所代表的那样,输入层是接收输入那一层,本质上是网络的第一层。而输出层是生成输出的那一层,也可以说是网络的最终层。处理层是网络中的隐藏层。这些隐藏层是对传入数据执行特定任务并将其生成的输出传递到下一层的那些层。输入和输出层是我们可见的,而中间层则是隐藏的。 7)MLP(多层感知器) ——单个神经元将无法执行高度复杂的任务。因此,我们使用堆栈的神经元来生成我们所需要的输出。在最简单的网络中,我们将有一个输入层、一个隐藏层和一个输出层。每个层都有多个神经元,并且每个层中的所有神经元都连接到下一层的所有神经元。这些网络也可以被称为完全连接的网络。 8)正向传播(Forward Propagation) ——正向传播是指输入通过隐藏层到输出层的运动。在正向传播中,信息沿着一个单一方向前进。输入层将输入提供给隐藏层,然后生成输出。这过程中是没有反向运动的。 9)成本函数(Cost Function) ——当我们建立一个网络时,网络试图将输出预测得尽可能靠近实际值。我们使用成本/损失函数来衡量网络的准确性。而成本或损失函数会在发生错误时尝试惩罚网络。 我们在运行网络时的目标是提高我们的预测精度并减少误差,从而最大限度地降低成本。最优化的输出是那些成本或损失函数值最小的输出。 如果我将成本函数定义为均方误差,则可以写为: C= 1/m ∑(y–a)^2, 其中m是训练输入的数量,a是预测值,y是该特定示例的实际值。 学习过程围绕最小化成本来进行。 10)梯度下降(Gradient Descent) ——梯度下降是一种最小化成本的优化算法。要直观地想一想,在爬山的时候,你应该会采取小步骤,一步一步走下来,而不是一下子跳下来。因此,我们所做的就是,如果我们从一个点x开始,我们向下移动一点,即Δh,并将我们的位置更新为x-Δh,并且我们继续保持一致,直到达到底部。考虑最低成本点。 在数学上,为了找到函数的局部最小值,我们通常采取与函数梯度的负数成比例的步长。 11)学习率(Learning Rate) ——学习率被定义为每次迭代中成本函数中最小化的量。简单来说,我们下降到成本函数的最小值的速率是学习率。我们应该非常仔细地选择学习率,因为它不应该是非常大的,以至于最佳解决方案被错过,也不应该非常低,以至于网络需要融合。 12)反向传播(Backpropagation) ——当我们定义神经网络时,我们为我们的节点分配随机权重和偏差值。一旦我们收到单次迭代的输出,我们就可以计算出网络的错误。然后将该错误与成本函数的梯度一起反馈给网络以更新网络的权重。 最后更新这些权重,以便减少后续迭代中的错误。使用成本函数的梯度的权重的更新被称为反向传播。 在反向传播中,网络的运动是向后的,错误随着梯度从外层通过隐藏层流回,权重被更新。 13)批次(Batches) ——在训练神经网络的同时,不用一次发送整个输入,我们将输入分成几个随机大小相等的块。与整个数据集一次性馈送到网络时建立的模型相比,批量训练数据使得模型更加广义化。 14)周期(Epochs) ——周期被定义为向前和向后传播中所有批次的单次训练迭代。这意味着1个周期是整个输入数据的单次向前和向后传递。 你可以选择你用来训练网络的周期数量,更多的周期将显示出更高的网络准确性,然而,网络融合也需要更长的时间。另外,你必须注意,如果周期数太高,网络可能会过度拟合。 15)丢弃(Dropout) ——Dropout是一种正则化技术,可防止网络过度拟合套。顾名思义,在训练期间,隐藏层中的一定数量的神经元被随机地丢弃。这意味着训练发生在神经网络的不同组合的神经网络的几个架构上。你可以将Dropout视为一种综合技术,然后将多个网络的输出用于产生最终输出。 16)批量归一化(Batch Normalization) ——作为一个概念,批量归一化可以被认为是我们在河流中设定为特定检查点的水坝。这样做是为了确保数据的分发与希望获得的下一层相同。当我们训练神经网络时,权重在梯度下降的每个步骤之后都会改变,这会改变数据的形状如何发送到下一层。 但是下一层预期分布类似于之前所看到的分布。 所以我们在将数据发送到下一层之前明确规范化数据。 17)滤波器(Filters) ——CNN中的滤波器与加权矩阵一样,它与输入图像的一部分相乘以产生一个回旋输出。我们假设有一个大小为28 * 28的图像,我们随机分配一个大小为3 * 3的滤波器,然后与图像不同的3 * 3部分相乘,形成所谓的卷积输出。滤波器尺寸通常小于原始图像尺寸。在成本最小化的反向传播期间,滤波器值被更新为重量值。 参考一下下图,这里filter是一个3 * 3矩阵: 与图像的每个3 * 3部分相乘以形成卷积特征。 18)卷积神经网络(CNN) ——卷积神经网络基本上应用于图像数据。假设我们有一个输入的大小(28 * 28 * 3),如果我们使用正常的神经网络,将有2352(28 * 28 * 3)参数。并且随着图像的大小增加参数的数量变得非常大。我们“卷积”图像以减少参数数量(如上面滤波器定义所示)。当我们将滤波器滑动到输入体积的宽度和高度时,将产生一个二维激活图,给出该滤波器在每个位置的输出。我们将沿深度尺寸堆叠这些激活图,并产生输出量。 你可以看到下面的图,以获得更清晰的印象。 19)池化(Pooling) ——通常在卷积层之间定期引入池层。这基本上是为了减少一些参数,并防止过度拟合。最常见的池化类型是使用MAX操作的滤波器尺寸(2,2)的池层。它会做的是,它将占用原始图像的每个4 * 4矩阵的最大值。 你还可以使用其他操作(如平均池)进行池化,但是最大池数量在实践中表现更好。 20)填充(Padding) ——填充是指在图像之间添加额外的零层,以使输出图像的大小与输入相同。这被称为相同的填充。 在应用滤波器之后,在相同填充的情况下,卷积层具有等于实际图像的大小。 有效填充是指将图像保持为具有实际或“有效”的图像的所有像素。在这种情况下,在应用滤波器之后,输出的长度和宽度的大小在每个卷积层处不断减小。 21)数据增强(Data Augmentation) ——数据增强是指从给定数据导出的新数据的添加,这可能被证明对预测有益。例如,如果你使光线变亮,可能更容易在较暗的图像中看到猫,或者例如,数字识别中的9可能会稍微倾斜或旋转。在这种情况下,旋转将解决问题并提高我们的模型的准确性。通过旋转或增亮,我们正在提高数据的质量。这被称为数据增强。 循环神经网络 22)循环神经元(Recurrent Neuron) ——循环神经元是在T时间内将神经元的输出发送回给它。如果你看图,输出将返回输入t次。展开的神经元看起来像连接在一起的t个不同的神经元。这个神经元的基本优点是它给出了更广义的输出。 23)循环神经网络(RNN) ——循环神经网络特别用于顺序数据,其中先前的输出用于预测下一个输出。在这种情况下,网络中有循环。隐藏神经元内的循环使他们能够存储有关前一个单词的信息一段时间,以便能够预测输出。隐藏层的输出在t时间戳内再次发送到隐藏层。展开的神经元看起来像上图。只有在完成所有的时间戳后,循环神经元的输出才能进入下一层。发送的输出更广泛,以前的信息保留的时间也较长。 然后根据展开的网络将错误反向传播以更新权重。这被称为通过时间的反向传播(BPTT)。 24)消失梯度问题(Vanishing Gradient Problem) ——激活函数的梯度非常小的情况下会出现消失梯度问题。在权重乘以这些低梯度时的反向传播过程中,它们往往变得非常小,并且随着网络进一步深入而“消失”。这使得神经网络忘记了长距离依赖。这对循环神经网络来说是一个问题,长期依赖对于网络来说是非常重要的。 这可以通过使用不具有小梯度的激活函数ReLu来解决。 25)激增梯度问题(Exploding Gradient Problem) ——这与消失的梯度问题完全相反,激活函数的梯度过大。在反向传播期间,它使特定节点的权重相对于其他节点的权重非常高,这使得它们不重要。这可以通过剪切梯度来轻松解决,使其不超过一定值。
牙牙大少
文章主要分为: 一、人工神经网络的概念; 二、人工神经网络的发展历史; 三、人工神经网络的特点; 四、人工神经网络的结构。 。。 人工神经网络(Artificial Neural Network,ANN)简称神经网络(NN),是基于生物学中神经网络的基本原理,在理解和抽象了人脑结构和外界刺激响应机制后,以网络拓扑知识为理论基础,模拟人脑的神经系统对复杂信息的处理机制的一种数学模型。该模型以并行分布的处理能力、高容错性、智能化和自学习等能力为特征,将信息的加工和存储结合在一起,以其独特的知识表示方式和智能化的自适应学习能力,引起各学科领域的关注。它实际上是一个有大量简单元件相互连接而成的复杂网络,具有高度的非线性,能够进行复杂的逻辑操作和非线性关系实现的系统。 神经网络是一种运算模型,由大量的节点(或称神经元)之间相互联接构成。每个节点代表一种特定的输出函数,称为激活函数(activation function)。每两个节点间的连接都代表一个对于通过该连接信号的加权值,称之为权重(weight),神经网络就是通过这种方式来模拟人类的记忆。网络的输出则取决于网络的结构、网络的连接方式、权重和激活函数。而网络自身通常都是对自然界某种算法或者函数的逼近,也可能是对一种逻辑策略的表达。神经网络的构筑理念是受到生物的神经网络运作启发而产生的。人工神经网络则是把对生物神经网络的认识与数学统计模型相结合,借助数学统计工具来实现。另一方面在人工智能学的人工感知领域,我们通过数学统计学的方法,使神经网络能够具备类似于人的决定能力和简单的判断能力,这种方法是对传统逻辑学演算的进一步延伸。 人工神经网络中,神经元处理单元可表示不同的对象,例如特征、字母、概念,或者一些有意义的抽象模式。网络中处理单元的类型分为三类:输入单元、输出单元和隐单元。输入单元接受外部世界的信号与数据;输出单元实现系统处理结果的输出;隐单元是处在输入和输出单元之间,不能由系统外部观察的单元。神经元间的连接权值反映了单元间的连接强度,信息的表示和处理体现在网络处理单元的连接关系中。人工神经网络是一种非程序化、适应性、大脑风格的信息处理,其本质是通过网络的变换和动力学行为得到一种并行分布式的信息处理功能,并在不同程度和层次上模仿人脑神经系统的信息处理功能。 神经网络,是一种应用类似于大脑神经突触连接结构进行信息处理的数学模型,它是在人类对自身大脑组织结合和思维机制的认识理解基础之上模拟出来的,它是根植于神经科学、数学、思维科学、人工智能、统计学、物理学、计算机科学以及工程科学的一门技术。 在介绍神经网络的发展历史之前,首先介绍一下神经网络的概念。神经网络主要是指一种仿造人脑设计的简化的计算模型,这种模型中包含了大量的用于计算的神经元,这些神经元之间会通过一些带有权重的连边以一种层次化的方式组织在一起。每一层的神经元之间可以进行大规模的并行计算,层与层之间进行消息的传递。 下图展示了整个神经网络的发展历程: 神经网络的发展有悠久的历史。其发展过程大致可以概括为如下4个阶段。 (1)、M-P神经网络模型:20世纪40年代,人们就开始了对神经网络的研究。1943 年,美国心理学家麦克洛奇(Mcculloch)和数学家皮兹(Pitts)提出了M-P模型,此模型比较简单,但是意义重大。在模型中,通过把神经元看作个功能逻辑器件来实现算法,从此开创了神经网络模型的理论研究。 (2)、Hebb规则:1949 年,心理学家赫布(Hebb)出版了《The Organization of Behavior》(行为组织学),他在书中提出了突触连接强度可变的假设。这个假设认为学习过程最终发生在神经元之间的突触部位,突触的连接强度随之突触前后神经元的活动而变化。这一假设发展成为后来神经网络中非常著名的Hebb规则。这一法则告诉人们,神经元之间突触的联系强度是可变的,这种可变性是学习和记忆的基础。Hebb法则为构造有学习功能的神经网络模型奠定了基础。 (3)、感知器模型:1957 年,罗森勃拉特(Rosenblatt)以M-P 模型为基础,提出了感知器(Perceptron)模型。感知器模型具有现代神经网络的基本原则,并且它的结构非常符合神经生理学。这是一个具有连续可调权值矢量的MP神经网络模型,经过训练可以达到对一定的输入矢量模式进行分类和识别的目的,它虽然比较简单,却是第一个真正意义上的神经网络。Rosenblatt 证明了两层感知器能够对输入进行分类,他还提出了带隐层处理元件的三层感知器这一重要的研究方向。Rosenblatt 的神经网络模型包含了一些现代神经计算机的基本原理,从而形成神经网络方法和技术的重大突破。 (4)、ADALINE网络模型: 1959年,美国著名工程师威德罗(B.Widrow)和霍夫(M.Hoff)等人提出了自适应线性元件(Adaptive linear element,简称Adaline)和Widrow-Hoff学习规则(又称最小均方差算法或称δ规则)的神经网络训练方法,并将其应用于实际工程,成为第一个用于解决实际问题的人工神经网络,促进了神经网络的研究应用和发展。ADALINE网络模型是一种连续取值的自适应线性神经元网络模型,可以用于自适应系统。 人工智能的创始人之一Minsky和Papert对以感知器为代表的网络系统的功能及局限性从数学上做了深入研究,于1969年发表了轰动一时《Perceptrons》一书,指出简单的线性感知器的功能是有限的,它无法解决线性不可分的两类样本的分类问题,如简单的线性感知器不可能实现“异或”的逻辑关系等。这一论断给当时人工神经元网络的研究带来沉重的打击。开始了神经网络发展史上长达10年的低潮期。 (1)、自组织神经网络SOM模型:1972年,芬兰的KohonenT.教授,提出了自组织神经网络SOM(Self-Organizing feature map)。后来的神经网络主要是根据KohonenT.的工作来实现的。SOM网络是一类无导师学习网络,主要用于模式识别﹑语音识别及分类问题。它采用一种“胜者为王”的竞争学习算法,与先前提出的感知器有很大的不同,同时它的学习训练方式是无指导训练,是一种自组织网络。这种学习训练方式往往是在不知道有哪些分类类型存在时,用作提取分类信息的一种训练。 (2)、自适应共振理论ART:1976年,美国Grossberg教授提出了著名的自适应共振理论ART(Adaptive Resonance Theory),其学习过程具有自组织和自稳定的特征。 (1)、Hopfield模型:1982年,美国物理学家霍普菲尔德(Hopfield)提出了一种离散神经网络,即离散Hopfield网络,从而有力地推动了神经网络的研究。在网络中,它首次将李雅普诺夫(Lyapunov)函数引入其中,后来的研究学者也将Lyapunov函数称为能量函数。证明了网络的稳定性。1984年,Hopfield 又提出了一种连续神经网络,将网络中神经元的激活函数由离散型改为连续型。1985 年,Hopfield和Tank利用Hopfield神经网络解决了著名的旅行推销商问题(Travelling Salesman Problem)。Hopfield神经网络是一组非线性微分方程。Hopfield的模型不仅对人工神经网络信息存储和提取功能进行了非线性数学概括,提出了动力方程和学习方程,还对网络算法提供了重要公式和参数,使人工神经网络的构造和学习有了理论指导,在Hopfield模型的影响下,大量学者又激发起研究神经网络的热情,积极投身于这一学术领域中。因为Hopfield 神经网络在众多方面具有巨大潜力,所以人们对神经网络的研究十分地重视,更多的人开始了研究神经网络,极大地推动了神经网络的发展。 (2)、Boltzmann机模型:1983年,Kirkpatrick等人认识到模拟退火算法可用于NP完全组合优化问题的求解,这种模拟高温物体退火过程来找寻全局最优解的方法最早由Metropli等人1953年提出的。1984年,Hinton与年轻学者Sejnowski等合作提出了大规模并行网络学习机,并明确提出隐单元的概念,这种学习机后来被称为Boltzmann机。 Hinton和Sejnowsky利用统计物理学的感念和方法,首次提出的多层网络的学习算法,称为Boltzmann 机模型。 (3)、BP神经网络模型:1986年,儒默哈特(D.E.Ru melhart)等人在多层神经网络模型的基础上,提出了多层神经网络权值修正的反向传播学习算法----BP算法(Error Back-Propagation),解决了多层前向神经网络的学习问题,证明了多层神经网络具有很强的学习能力,它可以完成许多学习任务,解决许多实际问题。 (4)、并行分布处理理论:1986年,由Rumelhart和McCkekkand主编的《Parallel Distributed Processing:Exploration in the Microstructures of Cognition》,该书中,他们建立了并行分布处理理论,主要致力于认知的微观研究,同时对具有非线性连续转移函数的多层前馈网络的误差反向传播算法即BP算法进行了详尽的分析,解决了长期以来没有权值调整有效算法的难题。可以求解感知机所不能解决的问题,回答了《Perceptrons》一书中关于神经网络局限性的问题,从实践上证实了人工神经网络有很强的运算能力。 (5)、细胞神经网络模型:1988年,Chua和Yang提出了细胞神经网络(CNN)模型,它是一个细胞自动机特性的大规模非线性计算机仿真系统。Kosko建立了双向联想存储模型(BAM),它具有非监督学习能力。 (6)、Darwinism模型:Edelman提出的Darwinism模型在90年代初产生了很大的影响,他建立了一种神经网络系统理论。 (7)、1988年,Linsker对感知机网络提出了新的自组织理论,并在Shanon信息论的基础上形成了最大互信息理论,从而点燃了基于NN的信息应用理论的光芒。 (8)、1988年,Broomhead和Lowe用径向基函数(Radialbasis function, RBF)提出分层网络的设计方法,从而将NN的设计与数值分析和线性适应滤波相挂钩。 (9)、1991年,Haken把协同引入神经网络,在他的理论框架中,他认为,认知过程是自发的,并断言模式识别过程即是模式形成过程。 (10)、1994年,廖晓昕关于细胞神经网络的数学理论与基础的提出,带来了这个领域新的进展。通过拓广神经网络的激活函数类,给出了更一般的时滞细胞神经网络(DCNN)、Hopfield神经网络(HNN)、双向联想记忆网络(BAM)模型。 (11)、90年代初,Vapnik等提出了支持向量机(Supportvector machines, SVM)和VC(Vapnik-Chervonenkis)维数的概念。 经过多年的发展,已有上百种的神经网络模型被提出。 深度学习(Deep Learning,DL)由Hinton等人于2006年提出,是机器学习的一个新领域。深度学习本质上是构建含有多隐层的机器学习架构模型,通过大规模数据进行训练,得到大量更具代表性的特征信息。深度学习算法打破了传统神经网络对层数的限制,可根据设计者需要选择网络层数。 突触是神经元之间相互连接的接口部分,即一个神经元的神经末梢与另一个神经元的树突相接触的交界面,位于神经元的神经末梢尾端。突触是轴突的终端。 大脑可视作为1000多亿神经元组成的神经网络。神经元的信息传递和处理是一种电化学活动.树突由于电化学作用接受外界的刺激,通过胞体内的活动体现为轴突电位,当轴突电位达到一定的值则形成神经脉冲或动作电位;再通过轴突末梢传递给其它的神经元.从控制论的观点来看;这一过程可以看作一个多输入单输出非线性系统的动态过程。 神经元的功能特性:(1)时空整合功能;(2)神经元的动态极化性;(3)兴奋与抑制状态;(4)结构的可塑性;(5)脉冲与电位信号的转换;(6)突触延期和不应期;(7)学习、遗忘和疲劳。 神经网络从两个方面模拟大脑: (1)、神经网络获取的知识是从外界环境中学习得来的。 (2)、内部神经元的连接强度,即突触权值,用于储存获取的知识。 神经网络系统由能够处理人类大脑不同部分之间信息传递的由大量神经元连接形成的拓扑结构组成,依赖于这些庞大的神经元数目和它们之间的联系,人类的大脑能够收到输入的信息的刺激由分布式并行处理的神经元相互连接进行非线性映射处理,从而实现复杂的信息处理和推理任务。 对于某个处理单元(神经元)来说,假设来自其他处理单元(神经元)i的信息为Xi,它们与本处理单元的互相作用强度即连接权值为Wi, i=0,1,…,n-1,处理单元的内部阈值为θ。那么本处理单元(神经元)的输入为: ,而处理单元的输出为: 式中,xi为第i个元素的输入,wi为第i个处理单元与本处理单元的互联权重即神经元连接权值。f称为激活函数或作用函数,它决定节点(神经元)的输出。θ表示隐含层神经节点的阈值。 神经网络的主要工作是建立模型和确定权值,一般有前向型和反馈型两种网络结构。通常神经网络的学习和训练需要一组输入数据和输出数据对,选择网络模型和传递、训练函数后,神经网络计算得到输出结果,根据实际输出和期望输出之间的误差进行权值的修正,在网络进行判断的时候就只有输入数据而没有预期的输出结果。神经网络一个相当重要的能力是其网络能通过它的神经元权值和阈值的不断调整从环境中进行学习,直到网络的输出误差达到预期的结果,就认为网络训练结束。 对于这样一种多输入、单输出的基本单元可以进一步从生物化学、电生物学、数学等方面给出描述其功能的模型。利用大量神经元相互连接组成的人工神经网络,将显示出人脑的若干特征,人工神经网络也具有初步的自适应与自组织能力。在学习或训练过程中改变突触权重wij值,以适应周围环境的要求。同一网络因学习方式及内容不同可具有不同的功能。人工神经网络是一个具有学习能力的系统,可以发展知识,以至超过设计者原有的知识水平。通常,它的学习(或训练)方式可分为两种,一种是有监督(supervised)或称有导师的学习,这时利用给定的样本标准进行分类或模仿;另一种是无监督(unsupervised)学习或称无导师学习,这时,只规定学习方式或某些规则,而具体的学习内容随系统所处环境(即输入信号情况)而异,系统可以自动发现环境特征和规律性,具有更近似于人脑的功能。 在人工神经网络设计及应用研究中,通常需要考虑三个方面的内容,即神经元激活函数、神经元之间的连接形式和网络的学习(训练)。
chuchu白白
专业名词介绍如下:
专业名词是指特定领域对一些特定事物的统一的业内称谓,该词运用在各行各业中。
基础名词示例解释
1. 神经元
就像神经元构成我们大脑的基本组成部分一样,神经元形成神经网络的基本结构。想想当我们人脑获得一个新信息时我们会做什么,当我们得到信息时,我们会处理它,然后生成一个输出。
类似的,神经网络中的神经元接收一个输入,处理它并产生一个输出,输出被发送到其他神经元进行进一步的处理,或者直接输出。
2. 权重
当输入进入神经元时,会乘以一个权重。例如,如果一个神经元有两个输入,那么每个输入都会有一个相关的权重分配给它。我们在模型训练过程中随机初始化权重,并更新这些权重。
神经网络经过训练后,赋予重要的输入更高的权重,而被认为不重要的输入会得到不那么重要的权重。0的权重表示该特性是无关紧要的。
让我们假设输入为a,和与a相关的权重W1。经过节点后,输入变成了a*W1。
3. 偏置
除了权重,另一个线性组件应用于输入,称为偏置。它被添加到输入的权重乘法的结果中。
这种偏置主要是为了改变权重的范围。
在添加偏置后,结果看起来像a*W1+偏置。这是输入变换的最后一个线性分量。
4.激活函数一旦将线性分量应用于输入,就会应用非线性函数。这是通过将激活函数应用到线性组合来完成的。
激活函数将输入信号转换为输出信号。激活函数应用后的输出看起来像f(a*W1+b),f()是激活函数。
在下面的图中,我们有n个输入,从X1到Xn,以及相应的权重Wk1到Wkn。我们有一个偏置值,即bk,权重首先乘以相应的输入,加上偏置,共同组成u。
激活函数被应用于u,即f(u),我们从神经元接收最终输出,如yk=f(u)。
优质英语培训问答知识库