谦谦妈妈2015
黑洞是由德国数学家卡尔·史瓦西首次计算出来的,在黑洞周围任何东西无论是信号、光还是物质都无法逃逸,时空在这里成为了一个无底洞,这么一个看不到摸不到也探测不到的地方就叫黑洞。
超级尺蠖爱和平
General relativity predicts a particularly dense dark objects. Evolution of massive stars in their late collapse occurs, the dense material in particular, it has one called "event horizon" of the closed border, a black hole hidden in a huge gravitational field, due to the gravitational field so strong, including in particular photon (ie the composition of light particles, the speed c = 3.0 × 10 ^ 8m / s), including any material can only be entered could not escape. The formation of a black hole minimum mass star's core is about three times the solar mass, of course, this is the last star of nuclear quality, rather than main sequence stars in the period of quality. In addition to this stellar-class black hole, there are other sources of black holes - the so-called micro-black holes may be formed in the early universe, the so-called supermassive black holes may exist in the central galaxy. A black hole can be found through the concept of electronic equipment.
The black hole within its borders to prevent any outsiders to see anything, which is the object known as the "black hole" of the reason. We were unable to observe the reflection of light it can only be affected indirectly understand the objects around the black hole. Having said that, but the black hole still has its borders, namely "event horizon (horizon)." It is assumed that the evolution of stellar black hole of death matter, is in a special super-massive stars collapse generated. In addition, the quality of a black hole must be larger than the Chandrasekhar limit of stellar evolution to the end of the form, quality, smaller than the Chandrasekhar limit of the star is unable to form a black hole.
艳的笑窝
General relativity predicts a particularly dense dark objects. Evolution of massive stars in their late collapse occurs, the dense material in particular, it has one called "event horizon" of the closed border, a black hole hidden in a huge gravitational field, due to the gravitational field so strong, including in particular photon (ie the composition of light particles, the speed c = 3.0 × 10 ^ 8m / s), including any material can only be entered could not escape. The formation of a black hole minimum mass star's core is about three times the solar mass, of course, this is the last star of nuclear quality, rather than main sequence stars in the period of quality. In addition to this stellar-class black hole, there are other sources of black holes - the so-called micro-black holes may be formed in the early universe, the so-called supermassive black holes may exist in the central galaxy. A black hole can be found through the concept of electronic equipment. The black hole within its borders to prevent any outsiders to see anything, which is the object known as the "black hole" of the reason. We were unable to observe the reflection of light it can only be affected indirectly understand the objects around the black hole. Having said that, but the black hole still has its borders, namely "event horizon (horizon)." It is assumed that the evolution of stellar black hole of death matter, is in a special super-massive stars collapse generated. In addition, the quality of a black hole must be larger than the Chandrasekhar limit of stellar evolution to the end of the form, quality, smaller than the Chandrasekhar limit of the star is unable to form a black hole. 翻译成汉语就是下面的意思----广义相对论预言的一种特别致密的暗天体。大质量恒星在其演化末期发生塌缩,其物质特别致密,它有一个称为“视界”的封闭边界,黑洞中隐匿着巨大的引力场,因引力场特别强以至于包括光子(即组成光的微粒,速度c=3.0×10^8m/s)在内的任何物质只能进去而无法逃脱。形成黑洞的星核质量下限约3倍太阳质量,当然,这是最后的星核质量,而不是恒星在主序时期的质量。除了这种恒星级黑洞,也有其他来源的黑洞——所谓微型黑洞可能形成于宇宙早期,而所谓超大质量黑洞可能存在于星系中央。黑洞可以经由电子仪器观查到。
我是中吃货
科学家相信在宇宙空间的一些区域有如此巨大的引力把过于接近它的任何物质都吸进去,它们的作用就像巨大的吸尘器。这些物质——不论是彗星、行星或者一团气体云——将被压缩到无限大的密度,从此永远不见了。引力如此强大,它牵曳时间和空间,把时间拖慢了,把空间伸展了。甚至光也不能逃脱强烈的引力牵曳,所以黑洞保留黑色并且是看不见的。美国物理学家约翰·惠勒将这些黑的狼吞虎咽的区域命名为黑洞。
黑洞似乎更像科学幻想而不像真实。事实上,黑洞概念是理论物理学家幻想的产物,真实的黑洞至今也没有被结论性的发现所证实。但从1915年爱因斯坦发展他的相对论之后,科学家已经认为黑洞有可能存在。它将夺取光的全部能量,用捕捉行星大气的同样方式捕捉光。引力要达到这样强度,引力源必须是一个极致密的天体,一个质量很大而又压缩到很小空间内的天体。1916年,德国天文学家卡尔·史瓦西计算出如何压缩恒星使它的引力能捕捉住光。根据史瓦西的计算,像太阳大小的恒星——直径为1392000千米——将缩到直径小于3千米。
1939年,美国物理学家尤里乌斯·罗伯特·奥本海默和哈特兰·S斯奈德发现比太阳大得多的恒星可能变得这样小。在恒星的大部分生命期间,它的大小保持不变,因为在它的内部存在力的平衡,燃烧核燃料产生的热使恒星向外膨胀,而引力拉恒星向内收缩。最后,约几十亿年,恒星耗尽了它的核燃料并因它本身的引力而坍缩。奥本海默和斯奈德证明如果恒星的质量是太阳的3.2倍,坍缩就不可阻止。
科学家相信地球所在的银河系内可能隐藏着多达1亿个由恒星坍缩而留下的黑洞。1990年在新墨西哥的甚大阵射电望远镜取得了银河系中心的细像,显示从中心发出惊人的能量爆发。一些科学家相信这将确认在银河中心存在质量为太阳400万倍的黑洞。科学家利用哈勃空间望远镜于1992年发现在附近的一个星系中有存在质量为太阳300万倍的黑洞的有指望的迹象。
因为黑洞是看不见的,天文学家利用它们的效应以确定它们的位置。物质向黑洞中心旋进时将快速地发射可察觉的X射线脉冲。1965年,天文学家观察到来自1万光年外的天鹅星座的强X射线。1971年,全球第一颗X射线人造卫星极精确地确定这些X射线源的准确位置。它是一个看不见的大质量天体,天文学家命名它为天鹅座X-1。天鹅座X-1可能证明为第一个确认的黑洞。
优质英语培训问答知识库