期刊问答网 论文发表 期刊发表 期刊问答
  • 回答数

    4

  • 浏览数

    109

richardfish
首页 > 期刊问答网 > 期刊问答 > 人工智能现状与未来论文怎么写的

4个回答 默认排序1
  • 默认排序
  • 按时间排序

phoenix_YANG

已采纳
发展新一代人工智能是事关一个国家能否抓住新一轮科技革命和产业变革机遇的战略问题。近年来,各国纷纷出台政策大力支持推动国家人工智能的发展,我国也不例外。目前,我国人工智能企业主要分布在京津冀、长三角和珠三角,京津冀竞争力排名第一。京津冀竞争力位居榜首与前三次工业革命不同,中国在科技革命已经不再是被动的跟随者,在人工智能领域正在成为积极的引领者。继2017年7月国家出台的《新一代人工智能发展规划》之后,各省市自治区纷纷响应,制定了各自的人工智能发展规划、实施意见和行动方案。地方政府的政策不仅在针对国家战略作出响应,还在对当地智能企业和产业发展需求的作出响应,尤其是以人才聚集地著称的京津冀、长三角和珠三角地区。近年来这些地区在政策红利等各种叠加因素的驱动下,人工智能行业发展迅速,成为了我国人工智能发展的典范。其中,京津冀地区竞争力最强,夺得2019年人工智能评选综合分6分;长三角和珠三角分别夺得7分和6分。

人工智能现状与未来论文怎么写的

295 评论(14)

MaggieRR

北京大学人工智能原理:4-人工智能的发展现状
155 评论(14)

amingzai

展望前沿技术探索,未来三到五年最有可能出现突破的就是半监督的学习方法。现在深度卷积神经网络很好,但是它有缺点,即依赖于带标签的完备大数据,没有大数据喂食就不可能达到人类水平,但是要获得完备的大数据,需要付出的资源代价太大,很多应用场景甚至得不到,比如把全世界的火车照片都搜集起来,这是不可能的事。我们希望能够做一些小数据、小样本的半监督学习,训练数据不大,但是还能够达到人类水平。我们做过很多实验,人为地去掉一半甚至去掉1/4的标签数据去训练深度卷积神经网络,希望网络能够具有举一反三的能力,通过小样本或小数据的学习同样能够达到人类水平。这方面的研究不管是利用生成式对抗网络,还是与传统统计机器学习方法相结合,或者是与认知计算方法的结合,证明难度都挺大。比如我们看到了土狗的照片,从来没见过藏獒、宠物狗,但通过举一反三就能够识别出来。这靠什么?靠推理。人类不完全是基于特征提取,还靠知识推理获得更强的泛化能力。而现在的深度卷积神经网络是靠多级多层的特征提取,如果特征提取不好,识别结果就不好,就达不到人类水平。总之,特征提取要好就必须要有完备的大数据。但不管怎样,相信具有“特征提取+知识推理”的半监督或者无监督的深度卷积神经网络三到五年会有突破,而且还是基于端到端学习的,其中也会融入先验知识或模型。相对而言,通用人工智能的突破可能需要的时间更长,三到五年能不能突破还是未知,但是意义非常重大。在半监督、无监督深度学习方法突破之后,很多行业应用包括人工智能场景研发都会快速推进。实际应用时我们一般都通过数据迭代、算法迭代向前推进。从这个角度来说,AlphaGo中体现的深度强化学习代表着更大的希望。因为它也是基于深度卷积神经网络的,包括以前用的13层网络,现在用的40层卷积神经网,替代了以前的浅层全连接网络,带来的性能提升是很显著的。为什么深度强化学习更有意义?首先它有决策能力,决策属于认知,这已经不仅仅是感知智能了。其次AlphaGo依赖的仅仅是小数据的监督学习。3000万的6-9段人类职业棋手的棋局,对人类来说已经是大数据了,但对围棋本身的搜索空间来讲则是一个小数据。不管柯洁还是聂卫平,都无法记住3000万个棋局,但19x19的棋盘格上,因每个交叉点存在黑子、白子或无子三种情况,其组合数或搜索空间之巨大,超过了全宇宙的粒子数。对具有如此复杂度的棋局变化,人类的3000万个已知棋局真的就是一个小数据,AlphaGo首先通过深度监督学习,学习人类的3000万个棋局作为基础,相当于站在巨人的肩膀上,然后再利用深度强化学习,通过自我对弈、左右互搏搜索更大的棋局空间,是人类3000万棋局之外的棋局空间,这就使AlphaGo 0下出了很多我们从未见过的棋谱或者棋局。总的来说,深度强化学习有两大好处,它寻找最优策略函数,给出的是决策,跟认知联系起来。第二,它不依赖于大数据。这就是前面说的小数据半监督学习方法。因为在认知层面上进行探索,而且不完全依赖于大数据,因此意义重大,魅力无穷。相信深度强化学习非常有潜力继续向前发展,将大大扩展其垂直应用领域。但是它本身并不是一个通用人工智能。AlphaGo只能下围棋不能同时下中国象棋、国际象棋,因此还只是专注于一个“点”上面的,仍属于弱人工智能。实现通用人工智能,把垂直细分领域变宽或者实现多任务而不是单任务学习,对深度神经网络而言,沿什么样的技术途径往前走现在还未知,但是肯定要与基于学习的符号主义结合起来。通用人工智能现在没有找到很好的线索往前走,原因一是因为神经网络本身是黑箱式的,内部表达不可解析,二是因为传统的卷积神经网络本身不能完成多任务学习。可以考虑跟知识图谱、知识推理等符号主义的方法结合,但必须是在新的起点上,即在已有大数据感知智能的基础上,利用更高粒度的自主学习而非以往的规则设计来进行。另外从神经科学的角度去做也是可能的途径之一。
275 评论(15)

猩猩崛起

人工智能利用其技术赋予多个行业能力,实现人工智能与行业的深度结合,包括AI+金融、AI+医疗、AI+安全、AI+家庭、AI+教育等,实现传统行业的智能化。金融、医疗、安全等行业与用户生活密切相关,而且有大量消耗人力物力的程序化、优化的工作内容,在相关领域和场景中首先实现AI+。人工智能技术从国外开始,但由于互联网,特别是国内移动互联网的发展,目前中西在人工智能领域的发展差距越来越小,中国新四大发明中的移动支付、自行车共享等技术在世界领先,中国以现有成果继续大力配置人工智能。美国人工智能企业的发展比中国早5年。美国最初从1991年开始萌芽的1998进入发展期间的2005年后开始高速成长期的2013年后发展稳定。中国AI企业诞生于1996年,2003年产业进入发展期。2015年高峰后进入稳定期。中国将在人工智能领域继续追逐发达国家。
97 评论(14)

相关问答