期刊问答网 论文发表 期刊发表 期刊问答
  • 回答数

    3

  • 浏览数

    164

wjg_mrn
首页 > 期刊问答网 > 期刊问答 > 四年级数学小论文500字怎么写好看

3个回答 默认排序1
  • 默认排序
  • 按时间排序

菜鸟!

已采纳
数学在我们的生活中可以说是无处不在,到超市买东西付钱时,测量某东西的面积时,制作平行四边形、直角形、三角形等各种形状的物品时……都是数学知识在生活中的直接运用。前几天我们家就发生了一件运用数学知识解决生活问题的事情。那天放学回家,我往小椅子上一坐,只听“嘎吱”一声,吓得我赶忙跳了起来。哈,原来是椅子的一条腿松了。“我们来修椅子怎么样”,我一时心血来潮地对爸爸妈妈说。爸爸妈妈挺支持地说“行啊”。于是全家人便开始忙碌起来,找工具的找工具,扶椅子的扶椅子,钉钉子的钉钉子。一阵“噼噼啪啪”声后,几根大钉子钉进了那条松了的椅子腿上,“嘿,总算钉好了”,我拍拍手,满意地可往上一坐。“嘎吱,嘎吱”,咦,怎么还是不对劲啊,怎么办呢?突然,我想起数学老师讲过的一句话:三角形能对物体起到稳定作用。对啊,我刚才怎么没想到呢?我马上找来了一块小木头,并根据小椅子的四条腿与椅面形成的角度,将其切削成了4块同样大小的三角形小木头,后把三角形木头分别补在椅腿与椅面的空档处,用钉子钉紧。你别说,这一下椅子坐上去可是稳稳当当的了。嘿,数字可真奇妙。看来以后我一定要更加努力地学好数学,并将数学运用到生活的一点一滴当中,去分析、解决生活中遇到的实际问题,更好地适应社会的发展和需要。让生活变得更加有意义。

四年级数学小论文500字怎么写好看

87 评论(14)

前面有樱桃

利用除法来比较分数的大小 今天阳光明媚,我正在家中看《小学数学奥林匹克》忽然发现这样一道题:比较1111/111,11111/1111两个分数的大小。顿时,我来了兴趣,拿起笔在演草纸上“刷刷”地画了起来,不一会儿,便找到了一种解法。那就是把这两个假分数化成带分数,然后利用分数的规律,同分子 分数,分母越小,这个分数就越大。解出1111/111<11111/1111。解完之后,我高兴极了,自夸道:“看来,什么难题都难不倒我了。”正在织毛衣的妈妈听了我的话,看了看题目,大声笑道:“哟,我还以为有多难题来,不就是简单的比较分数大小吗?”听了妈妈的话,我立刻生气起来,说:“什么呀 ,这题就是难。”说完我又讽刺起妈妈来:“你多高啊,就这题对你来说还不是小菜啊!”妈妈笑了:“好了,好了,不跟你闹了,不过你要能用两种方法解这题,那就算高水平了。”我听了妈妈的话又看了看这道题,还不禁愣了一下“还有一种解法。”我惊讶地说道。“当然了”妈妈说道,“怎么样,不会做了吧,看来你还是低水平。”我扣了妈妈的话生气极了,为了证明我是高水平的人我又做了起来。终于经过我的一番努力,第二种方法出来了,那就是用除法来比较它们之间的大小。你看,一个数如果小于另一个数,那么这个数除以另一个数商一定是真分数,同理,一个数如果大于另一个数,那么这个数除以另一个数,商一定大于1。利用这个规律,我用1111/111÷11111/1111,由于这些数太大,所以不能直接相乘,于是我又把这个除法算式改了一下,假设有8个1,让你组成两个数,两个数乘积最大的是多少。不用说,一定是两个最接近的,所以1111/111÷11111/1111=1111/111×1111/11111、1111×1111>111×11111,那么也就是1111/111>11111/1111。大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了5小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×5=5(千米),5+18=5(千米),5×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×5=5(千米),5-18=5(千米),5×2=189(千米)。所以正确答案应该是:45×5=5(千米),5+18=5(千米),5×2=261(千米)和45×5=5(千米),5-18=5(千米),5×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。 在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。
317 评论(14)

EverLMT

[ 题目 ] 有15枚金币,其中有一枚是假币 。 这枚假币外表跟真币一样,只是比真币略轻些,现在给你一个天平,不用砝码,并最多称三次,你能将假币找出来吗? 这道题我是这样想的:既然假币比真币轻,我从中取出一枚假定它为假币,剩下的平均分置天平两端应相等.如不等,则假设不对,假币在略轻的一边 。 第一步,各取7枚金币置于天平两端,若相等,则剩下为假币,若不等,则假币在略轻的一端 。 第二步,把略轻的一组7枚金币再各取3枚金币置于天平两端,若相等,则剩下为假币,若不等,则假币在略轻的一端 。 第三步,把略轻的一组3枚金币再各取1枚金币置于天平两端,若相等,则剩下为假币,若不等,不用我说,大家都知道那枚是真那枚是假啦! 由此可见,用排除法解这道题不仅符合要求,而且省时省力.同学们也可以开动脑筋 , 想想有没有其它的方法呢? 我在看这篇论文的时候,写了如下简评:这种策略其实并不具有推广价值,真正有价值的分类,应该是把总数平均分成3份,取其中两份称。比如说,有45枚硬币,平均分成3份,每份15枚。取其中两份称,如果天平平衡,则假币在剩下一堆里,如果天平不平衡,则在轻的一边;接着把有假币这堆的15枚硬币平均分成3份,每份5枚,同样取两份称,天平平衡,假币自然在剩下一堆里,天平不能平衡,假币不能平衡,自然在轻的一边;再把有假币的5枚分成3份,不能平均分,只能两堆取2,一堆取1。用两堆2的放在天平两边称,天平平衡,剩下的一枚就是假币,天平不能平衡,则还要把轻的一边的两枚再称一次。因此,这种情况下,最多称四次肯定能够找出假币。如果起初硬币总数不是3的倍数,比如说40枚,我们可以取两堆13枚,一堆14枚(40 ÷ 3=13 …… 1)( 把多出的一枚加在其中一堆上,同样地,如果余数为2,则把2枚分摊在两堆上)。
276 评论(10)

相关问答