cnbackup
这里是一个很好的计算机,他可以给你导出什么论文都可以给你导出来,导读计算好的 
数据科学(Data Science)主要包括两个方面:用数据的方法研究科学;用科学的方法研究数据。前者包括生物信息学、天体信息学、数字地球等领域;后者包括统计学、机器学习、数据挖掘、数据库等领域。用数据的方法研究科学,最典型的例子是开普勒关于行星运动的三大定律;用科学的方法研究数据主要包括数据采集、数据存储和数据分析。数据科学依赖两个因素:一是数据的广泛性和多样性;二是数据研究的共性。
数据科学是关于数据的科学,为研究探索数据界奥秘的理论、方法和技术。数据科学在20世纪60年代已被提出,只是当时并未获得学术界的注意和认可,1974年彼得诺尔出版了《计算机方法的简明调查》中将数据科学定义为:“处理数据的科学,一旦数据与其代表事物的关系被建立起来,将为其他领域与科学提供借鉴”。1996年在日本召开的“数据科学、分类和相关方法”,已经将数据科学作为会议的主题词。2001年美国统计学教授威廉克利夫兰发表了《数据科学:拓展统计学的技术领域的行动计划》,因此有人认为是克利夫兰首次将数据科学作为一个单独的学科,并把数据科学定义为统计学领域扩展到以数据作为现金计算对象相结合的部分,奠定了数据科学的理论基础。
[人工智能]什么是真正的数据科学?来自一位数据科学家的解读