期刊问答网 论文发表 期刊发表 期刊问答

物理教育类毕业论文范文

  • 回答数

    3

  • 浏览数

    306

漂流沙
首页 > 期刊问答网 > 期刊问答 > 物理教育类毕业论文范文

3个回答 默认排序1
  • 默认排序
  • 按时间排序

时光说1780

已采纳
这是我在网上看到的一篇物理论文范文,希望对你有帮助。摘要:可靠性问题一直以来是各个行业关注的重点,伴随着电子工业的迅猛发展,可靠性分析将会越来越多的应用到该领域。在过电压防护领域中,SPD(Surge Protection Device)及浪涌保护系统的可靠性在电源、信号及射频显得尤为重要。本文使用系统性分析的方法对SPD的可靠性进行了分析,提出了提高SPD可靠性的途径,为今后的SPD技术发展提供了参考。关键词:可靠性;SPD;过电压;浪涌保护0 引言近代科技中,对元器件、零部件、整机、系统的可靠性提出了越来越高的要求。随着人们越来越多的使用电子元器件,电子元器件不能承受过电压和过电流的缺陷导致过电压保护器件在越来越多的行业中使用。于是各个行业针对SPD的可靠性提出了更高的要求。因此,为了适应现代科技的发展及基于设备、系统安全的考虑,对SPD的可靠性问题进行系统的分析并提出提高其可靠性的途径是很有必要的。1 串联系统与并联系统的可靠性评价方法由于包括SPD在内的各种产品都是通过若干个单元为了完成规定的功能而组合在一起的。因此除了针对单个部件和真个产品性能的评估外,还需要对系统结构进行可靠性评价。针对系统最基本的评价方法有串联系统和并联系统两种,因为任意的系统均可由这两种关系组成。1 串联系统的可靠度串联系统指的是对于一个系统来说,如果只要有一个单元失效就导致整个系统的失效,或者只有当所有单元都正常工作时,系统才正常工作。串联系统的模型如图一所示:设在时间t内,SPD的压敏单元Ai正常工作的事件为Xi,则串联系统的可靠度R(t)就是所有这n个单元同时正常工作的概率。即:R(t)=P(x1•x2•……•xn )若各单元可靠度相互独立,则串联系统的可靠度为:P(x1)= R1(t)P(x2︳x1)= P(x2)=R1(t)……P(xn︳x1•x2•……•xn )= P(xn)=Rn(t)于是串联系统的可靠度为:R(t)= ∏ni-1 Ri(t)由此式可见,单元数目越多,串联系统的可靠度越低。2 并联系统的可靠度并联系统指的是只要有一个单元还未失效,则整个系统就不发生故障,或者说只有当所有单元都失效时,整个系统才失效。并联系统模型如图二所示:设在时间t内,压敏单元Bi,发生故障的事件分别为Yi,则系统不可靠度为:F(t)= P(y1•y2•……•yn )同理得到:F(t)= ∏ni-1 Fi(t)则可得出,并联系统的可靠度为:R(t)=1- ∏ni-1 Fi(t)=1- ∏ni-1 [1-Ri(t)]由此式可见,单元数目越多,并联系统的可靠度越高。3 并串联系统的可靠度对于SPD和其他的产品来说,很少有单一串联的系统或单一并联的系统,往往都是综合两者的系统。串并联系统指的是各单元的关系先串联,然后并联组合。并串联系统指的是各单元的关系为先并联,然后串联组合。SPD的应用中多采取并串组合的方式,如图三所示:其中并串联系统的可靠度为:Rsp =1-(1-Rn)k由此可以看出,SPD最终采取的还是MOV与GDT的串联组合且系统已经简化到极致。因此要保证SPD的可靠性,均需要保证MOV和GDT单元的可靠性,即我们通常所讲的可靠度、瞬时故障率及平均故障间隔时间。2 保证和提高SPD可靠性途径基于上述的分析可以看出保证SPD可靠性的问题集中在保证MOV和GDT的可靠性上了,因此两个器件的参数正态分布将直接影响到SPD的可靠性。除此之外,选取器件的过程中,减额使用的原则也是非常重要的,即设计时让元器件、零部件和组件在低于负荷的情况下使用。1 静态参数一致性控制对于SPD中的静态参数来讲,在设计阶段均做过SPD的极限测试,即MOV和GDT电压分别在最高和最低情况下的不同组合,这样制定出的上限下限将作为器件参数正态分布时参考的关键指标。根据R(t)= ∏ni-1 Ri(t)可以看出,要保证R(t)越低,前提是保证RMOV(t)和RGDT(t)的可靠度。通过静态参数的正态分布图可以看出,只要保证参数的一致性即可在很大程度上保证系统的可靠度。如图四所示:3 器件的标准化选取标准化的器件和参数是经过权威部门鉴定或者长期的实验验证的结果,比起新设计的或者定制的器件更可靠。若保存或建立一个具有基本失效率值的标准元器件手册以备设计者选用,则产品的可靠性设计将大大减少系统可靠性设计的工作量。3 结论本文使用质量管理中的可靠性分析方法针对SPD进行了研究,根据SPD具体的系统设计及结构方式进行评估后,可以得出以下结论: 由于SPD系统通常均采用MOV与GDT串联的方式组合,因此SPD的可靠性主要由MOV和GDT的可靠性决定。 为了保证器件的可靠性,需要重点注意的是MOV与GDT的静态参数一致性,器件选型的标准化和减额使用的设计方法。 后续需要进一步就元器件的可靠性进行研究,以保证从工艺层面上寻找出更加有效的控制手段。[参考文献][1] 郎志正 质量管理及其技术方法 2003,345~[2] 马逢时 刘传冰 等 六西格玛管理统计指南--MINTAB使用指导 2007,第四章

物理教育类毕业论文范文

118 评论(14)

月影随念郎

初中物理教学课堂设计初中物理课堂教学设计的原则新课程改革的核心环节是课堂教学的改革,而课堂改革又着眼于课堂教学设计。因而课堂教学的科学性、合理性、有效性就直接影响着教学任务的实施,初中物理课程的教学任务是:学习物理学基础知识及科学方法,培养学生学习物理学的兴趣,学会应用有关知识解决问题,并树立科学观点、科学精神,培养创新意识和能力。传统的以教师为中心的思想规范的教学行为没有或较少从物理的精神、思想、和方法上挖掘教材内容的内涵,也较少注意从能力培养的着眼点上组织教学,不能达到现代课程理念要求的“以学生发展为本”。而建构主义的学习理念刚好补充了这些的不足。一、建构主义学习观构建主义作为一种关于认识的哲学,它至少可以追溯到三百年前的意大利哲学家维科(G,B.Vim,1668—1744),他强调知识和行动有密切关系,“真实的东西就是被建构出来的东西”,因此,人们只能清晰地理解自己建构的一切。后来,德国哲学家康德(I.Kant,1724--l840)也认为,主体不能直接通向外部世界,而只能通过利用内部建构的基本的认知原则去组织经验,形成知识。上世纪对建构主义思想的发展起推波助澜作用,并将它直接与人的学习联系起来的要首推杜威、皮亚杰和维果茨基三个人。其中美国哲学家、教育家杜威(J Dewey,1859—1952)认为,理解在本质上是联系动作的,真正的理解是与事物怎样动作和事情怎样做有关的。因此他将立足于“行动”的学习与不确定情境中的探索联系在一起,断言正是情境内在独特的、积极的不确定性,才能引发学习者的探索,并激励和指导学习者不断地探索。同时他还指出,这些情境必须发生在一定的社会背景之中,学习者在其中创建学习共同体,并在该共同体中一起建构他们的知识。当今建构主义者主张:世界是客观存在的,但对于世界的理解和赋予意义却由每个人自己决定;人们以自己的经验为基础来建构或解释现实,每个人的世界是用各自的头脑创建的;经验和对经验的信念的不同致使人们对外部世界的理解便也迥异;为了获得真理,人们通过合作学习修正自己的认识,从而使理解更深刻和全面。所以,他们比其他学派的学者更关注如何以原有的经验、心理结构和信念为基础来建构知识,更强调学习的建构性、主动性、目的性、情境性。建构主义的物理学习观认为:物理教学过程本质上是一种认识过程,是学习者个体建构和师生组成的“学习共同体”社会建构的统一过程,在此过程中,学生的主体作用和教师的主导作用均应表现出能动性,这一能动性应统一在形式多样的教学活动中。二、教学设计原则根据初中物理教学的任务和建构主义的物理学习观,现提出初中物理课堂教学设计时应遵循的五条原则:以学生发展为宗旨 教育最核心最重要的职能是要促进作为具体的、活生生的、个体的人的发展,教育改革亦是以学生发展为宗旨,即“一切为了学生的发展”。因此,初中物理教学设计时应明确地把提高学生的智力和能力放在优先地位,也就是应把智能开发作为教学设计的始点和终点。在设计某一课时时,所选择的知识结构、教学方法等都应体现对学生的智能发展可能产生的影响。如一位教师讲二力平衡的条件时,她在讲课中让学生用桌上的弹簧秤、滑板、小车两人一组动手实验,通过观察弹簧秤的读数,分析力的大小、方向,经过讨论、归纳出了二力平衡得条件。这样做学生参与程度较高,通过动手操作,动口讨论,动脑思维,归纳规律,有利于学生发现品质的培养和抽象概括能力的提高。接着引导学生从二力平衡的条件引导学生分析身边有关得平衡问题。这样做既突出了学生的主体地位,又培养了学生运用知识解决实际问题得能力。这节课中,教师没把要讲的内容当成现成的知识传授,而是进行了活化,作为一个知识探索及获得的过程,有效地提高了学生“自主学习”的能力。以学生为中心传统的课堂教学,学生们主要是“听中学”、“看中学”,即学生听教师讲解、看教师提供的教具、图片或录像,在听或看的过程中思考、记忆。而新课程提倡“做中学”,这是美国进步教育家杜威倡导的方法,让学生在活动中、在操作实验或深入实际生活的过程中学习,让学生从自己的直接经验中学习,即以“学生为中心”。“以学生为中心”的原则还要求在进行物理课堂教学设计时要充分考虑到学生已有的知识和经验,考虑到学生的生理和心理发展水平,了解学生,尊重学生,建立平等、民主、和谐的课堂教学氛围,做到实现教学目的和以学生为中心的一致性。建构教学情境,激发学习兴趣 随着物理课程的改革,很多地方的物理课时也随着调整,那要如何让学生在这短而少的40分钟内掌握好所要完成的学习任务?这就要求学生自己能积极、主动地学习、完成练习,而能够调动初中学生积极性的就是学习的兴趣。爱因斯坦说过“兴趣是最好的老师”,在初中物理教学中,能激发学生学习兴趣的便是创造良好的物理情境氛围。初中物理教学中的情境可分为两种:实物情境和故事情境。(1) 实物情境实物情境又可分为实验情境与多媒体情境。新教材与就教材想比,实验的项目和数量都有所增加。教师要精心设计小实验、小制作及课外小实验,直观、形象、有趣的小实验能收到比任何语言描述都到的效果。而应用多媒体播放出来的课件在物理教学中起到积极的作用课件营造了一个立体的多维的生机盎然的物理教学情境,为学生提高丰富的直观的感性材料,调动学生的主动思维的积极性,增强学生学习物理的兴趣。(2) 故事情境 教师根据教学内容和学生的兴趣,在教学设计时,把握知识点,选取相关资料做“活化剂”,在上课发生或发展的过程中适时引入。要做到这一点,教师备课时哟重点注意以下几点:(1)、挖掘做讲知识与生活、生产的实际联系。(2)、了解该知识的发展过程及科学家相关的轶闻趣事。(3)、联系所讲知识设置悬念。例如,一位教师讲:在很久很久以前,北风刺骨,千里冰封,一个卖油郎沿冰过河,一不小心,“啪”一声摔倒了,这可惨了,油流了一地、更惨的是他怎么也爬不起来了,一起一摔,这时河岸上一只狗“汪、汪”地叫起来,卖油郎气不打一处来,捡起身边的空油桶向狗砸去,呵,奇迹出现了,(戛然而止,扫视学生),接着说:“他滑到了岸边,爬上了岸。”学生笑了,教师问:“这里涉及了多少学过的物理知识?下课后找出来。”一节课余味未尽,轻松愉快,印象深刻。整体建构原则这里的建构原则包括课堂内容的建构与结构的建构。(1)课堂内容的建构 在教学设计时,应把本节课所要学习的内容以及每个知识点蕴在整体知识的适当部位,而不应孤立的、割据的观点教知识、练技能。这就要求物理教师应具有完整的物理知识结构,要求明确该知识在整体中的地位,明确该知识在生活和社会中的实际应用。只有这样,教学中才能前后知识融通,使学生学得明白、学得主动。(2)课堂结构的建构 物理课堂结构的建构不等同于若干个教学环节的顺序安排,或者说多四十五分钟作简单的划分和确定,而应对教这一具有特殊性的活动过程加以考察和确定,课堂教学的过程是学生认知的过程,因而在进行课堂教学设计时,首先不能违背学生的认知规律这一原则。其次要重视课堂教学方法和学法的指导,不同的教学方法体现不同的教学思想,一堂课可以融会贯通多种教学方法,使整堂课贯穿实现知识与技能、过程与方法、情感态度与价值观的三维目标的思想。及时反馈补偿物理教学设计时,要考虑到各个教学环节的教学时学生可能会产生的疑惑、会提到的问题,即课堂的反馈信息,这时就要做好补偿措施,发现的问题要及时处理,以免影响教学进程或使学生形成错误的思维定势。例如,讲过浮力后,教师说:“既然浸在液体中的物体都要受到浮力的作用,为什么有的物体能够漂浮在水面,有的物体确沉到水底呢?”很多同学都作出了正确解释,个别学生没转过弯来,又通过让拉车的实例分析得出物体能否运动、向什么方向运动,不是有一个力决定的,而是有它所受到得所有力决定,虽然物体都受到浮力但也受到重力得作用,学生终于明白。同时页为浮沉条件做好准备。认知规律是客观的,个性差异也是难免的,整体调查和个案调查与处理在所难免,故教学设计中反馈补偿是非常重要的。希望对你有帮助,如有帮助,请采纳,谢谢
146 评论(8)

lsefjoes

物理问题解决与元认知研究【摘要】文章结合具体学科,分析了元认知在物理问题解决过程中的作用,以及如何通过物理问题解决对元认知进行有效开发。 【关键词】物理;问题解决;元认知 元认知( Metacognition)是弗拉维尔70年代提出的,此后关于元认知的研究越来越多,这些研究主要集中于阅读理解、记忆和问题解决三大领域,其中问题解决中的元认知研究是九十年代才开始的。研究表明学习能力强的学生元认知水平较高,元认知策略可以修补知识水平的欠缺以及补充、完善问题。 本文采取与具体学科相结合的方式,从物理学科的特点出发,从元认知的实质出发,探讨元认知在物理问题解决过程中的作用以及如何对其有效开发。 一、元认知在物理问题解决中的作用 1976年弗拉维尔对元认知的定义:一个人所具有的关于自己思维活动和学习活动的知识及其实施的控制,是任何调节认知过程的认知活动。 1979年Kluwe认为:元认知是明确专门指向个人的认知活动的积极的、反省的认知加工过程; Schraw & Dennison( 1994)定义:元认知是关于个人对自己学习反省、理解、控制的一种能力。元认知概念包括三方面的内容:元认知知识、元认知体验、元认知监控三种成分。三者相互作用,相互联系,其中元认知监控是元认知中的核心成分,它是学习成功的关键。 元认知对物理问题解决的目标进行修正。[1] 元认知使得解题过程具有明确的目标指向性,使解题者的心理活动都朝着目标靠拢。目标是问题解决者主观经验的知觉,它既是问题解决的开始,也是问题解决的归宿,它对问题解决的进程进行指导。解题中问题解决者要监控其解题计划,制订切实可行的目标,致使物理问题解决得以顺利进行。 元认知操作驱动物理问题解决的策略。解决物理问题需要一定的策略。策略是在思维模式的作用下反应出来的,它影响着物理问题解决的效率。问题解决者在解题过程中通过以下方式进行认知操作。(1)激活思维并制定策略,即以目标为出发点,将物理材料放入已有的知识背景中,在操作系统的作用下激活认知结构。在元认知基础上,根据材料系统在认知结构中的相似性,寻求物理认知结构中的“相似点”,把问题改组为适合原有知识的形式,或把以前知识通过经验加工成适合现有问题的形式,从而制订解题策略;(2)改组和实施策略,即通过对问题解决进程的反馈,面对问题,有多种解题方法,问题解决者要进行自我评价,实质上就是对问题解决策略的评价,如果发现目标确信无疑而又达不到或不能顺利达到目标时,则将怀疑其策略,有必要对策略进行调整。 元认知增强解题者在物理问题解决中的主体意识。鉴于物理学科的特点,一般解决物理问题有一定的困难,这就要求解题者能自我激活,发挥自我作用,排除障碍,产生问题解决的欲望。而元认知在整个问题解决过程中存在着内反馈的调节。(1)通过元认知知识,使解题者能审清题意,对问题的类型、难易程度、所用的知识有初步了解,使其能主动选择有效解题策略;(2)元认知体验的自我启发作用,调动非智力因素参与,产生“知”与“不知”的认知体验和情感体验,产生一些新的思路和方法,对原有的思维进行扩充,可以克服障碍,调动解题者的积极性和自信心;(3)元认知的监控作用,体现在解决问题的整个阶段,解题的前计划,解题过程中的监测,解后的评价、反思。 二、通过物理问题解决对学生进行元认知开发 学生的元认知能力往往在解题过程中体现,并在解题过程中培养出来,龚志宁(1999)研究发现元认知策略导致学困生成绩低于优生。有人曾经对比优生与物理学困生解题过程研究中。发现元认知能力的高低一定程度决定物理成绩高低。为了让学生“学会学习”,我们应加强学生物理问题元认知能力的培养。 1.激发学生的自我意识和培养学习动机。元认知能力的发展以一定的心理发展水平为基础,元认知在学生自我意识产生之后才发展起来。如果没有自我意识,学生不能对自己正在操作的认知对象进行积极的计划、监测、评价、反思。自我意识是以主体及其活动为意识对象,对人的认知活动起着监控作用。在解题学习中,人的自我意识是对自己在问题感知、表征、思考、记忆和体验的意识,对自己的目的、计划、行动以及行动效果的意识。 2.剖析思维过程,加强思路教学。以往教师解题只注重解题过程本身以及解题的结果,而忽略学生元认知作用的过程。元认知是认知的认知,元认知时刻在发挥作用,要提高学生的元认知水平,应该让学生体会教师的元认知发挥过程。遇到一个新问题时,向学生示范自己如何分析、寻找有效策略,最终解决问题的整个过程。有时教师也会进入死胡同,但有能力排除障碍。有时教师也犯错,但他运用元认知监控可以修正问题…总而言之,展示教师思维过程,将教师自身过程的自我监控、自我调节展现给学生。[2] 3.传授解题的元认知策略 (1)善于利用波利亚“自我提示语” Polya波利亚在他的解题理论著作中所给出很多提示语,都是属于元认知的范畴。在解题时经常自觉地运用这些提示语,是提高解题元认知能力的有效途径。如果问得合适,就可能引出好的答案,引出正确的想法。他的基本模式为: 第一步——阅读题意,表征问题;第二步——拟定计划,执行步骤;第三步——评价和反思 (2)同学之间相互质问(Inquiry)和争论(Argument) 质问是学生常采用的方法。学生对一些问题常常被动的接受,争论很少受到重视,但它与询问一样重要,(下转第194页)(上接第184页)通过争论对问题的理解能力比被动地接受强四倍,对一些思考型强的、有多种解法的问题,留给学生讨论,让学生说出自己的解题思路。为什么那样做?原因是什么?为什么选择这种方法?让同学之间相互质疑和争论,每个人对自己和他人的做法进行深入思考和反思,使学生对自己所解的题目有更深层的含义。 4.加强不良结构问题的教学 结构不良问题(ill-structured problem)相对结构良好问题(well-structured problem ),学生经常面对的是结构良好问题,目标定义明确,提供多种解题方法,而结构不良问题比较模糊,问题不明确,具有不清楚的目标和多样的解题方法,同时又属于开放型题目,对问题很难得到明确的方法。学生对知识不能迁移,而教育者往往对这方面重视不够。国外有这方面的研究,表明经过结构不良问题的训练,学生的元认知解题能力有很大提高。 总之提高学生物理问题解决的元认知水平非一朝一夕所能实现的,需要师生共同协作。教师应把学生的元认知能力培养纳入自己的教学目标中,在问题教学中,不断渗透元认知知识和策略的训练内容。调动学生的主体意识,注意元监控的实施,只有这样,学生的元认知水平在物理问题解决中得到开发。 【参考文献】 [1]朱德全,宋乃庆谈数学教学中的问题解决与元认知开发[J]学科教育研究,1997,(6). [2]周丽芳元认知及其培养[J]天津市教科院学报,2002,(1)希望对您有帮助。
154 评论(12)

相关问答