2640830092
由于要涉及到专业方面的词汇,一般的翻译网站和软件很难翻译好,建议找些专业论文阅读,熟悉词汇,然后自己翻译。 
岗位多不多你可以直接到各大招聘网站看看,搜索一下两个方向的职位就大概能了解了。其实好不好就业,主要还是看你个人学习的效果,技术学的好,能力又突出,在哪个领域都能受到企业青睐的。下面简单介绍下这两个方向的就业前景:人工智能是近年来较火的新兴行业,市场也有一定的人才需求,发展前景还是不错的,但是入行门槛较高,对于转行者想要直接进入行业相对有一定难度。大数据行业人才稀缺,市场需求量大,而且覆盖全行业,就业机会也多,发展前景还是相当不错的。而且大数据行业人才薪资也普遍较高,2018年一线城市大数据开发人才月薪资15-20k。这两个行业可以说未来前途都是不错的,在应用领域方面,目前大数据更为广泛,落地性正不断加强,行业和技术也相对来说都更成熟些。大数据给予人工智能足够有价值的数据支持,人工智能才之所以智能,所以相对于人工智能,大数据的人才需求量更大一些,也就是说人工智能只是大数据的一个应用方向。另外,关于转行学习,你的学历是什么,如果是大专以下不建议学习,企业招聘大数据人才对学历是有要求的!最低统招大专学历,而且证书是要学信网能够查到的。
用UC可以直接把网页翻译过来,你找需要的文章没什么问题,摘要翻译了基本也就解决了,而且也可以用Google Translate的API,你都可以试试的。
都非常不错大数据是指采集很多数据,进行分析,找出一些规律。云计算,简单说就是对数据进行分析的处理过程,比如CPU的计算能力。人工智能就高深了,简单说就是把机器人做来能像人一样的思考,有自己的独特思维。时代在进步,科技在发展,而且这是人类的必然走向,人工智能会按着人们设置的方向发展,就目前的技术而言,人工智能不可能达到电影中的水平,可以自由发展,最起码一百年内没有希望,以后不敢保证!所以威胁谈不上,人工智能只会帮助人类更好的发展生活和探索新科技新领域!
2个都不错。大数据是指采集很多数据,进行分析,找出一些规律。云计算,简单说就是对数据进行分析的处理过程,比如CPU的计算能力。人工智能就高深了,简单说就是把机器人做来能像人一样的思考,有自己的独特思维。时代在进步,科技在发展,而且这是人类的必然走向,人工智能会按着人们设置的方向发展,就目前的技术而言,人工智能不可能达到电影中的水平,可以自由发展,最起码一百年内没有希望,以后不敢保证!所以威胁谈不上,人工智能只会帮助人类更好的发展生活和探索新科技新领域!
首先需要理解人工智能与大数据的区别:人工智能主要有三个分支:基于规则的人工智能;无规则,计算机读取大量数据,根据数据的统计、概率分析等方法,进行智能处理的人工智能;基于神经元网络的一种深度学习。大数据分为“结构化数据”与“非结构化数据”。“结构化数据”是指企业的客户信息、经营数据、销售数据、库存数据等,存储于普通的数据库之中,专指可作为数据库进行管理的数据。相反,“非结构化数据”是指不存储于数据库之中的,包括电子邮件、文本文件、图像、视频等数据。如今,大量数据产生之后,有低成本的存储器将其存储,有高速的CPU对其进行处理,所以才有了人工智能后两个分支的理论得以实践。由此,人工智能就能做出接近人类的处理或者判断,提升精准度。同时,采用人工智能的服务作为高附加值服务,成为了获取更多用户的主要因素,而不断增加的用户,产生更多的数据,使得人工智能进一步优化。如今,大量数据产生之后,有低成本的存储器将其存储,有高速的CPU对其进行处理,所以才有了人工智能后两个分支的理论得以实践。由此,人工智能就能做出接近人类的处理或者判断,提升精准度。同时,采用人工智能的服务作为高附加值服务,成为了获取更多用户的主要因素,而不断增加的用户,产生更多的数据,使得人工智能进一步优化。
21世纪是数据信息大发展的时代,移动互联、社交网络、电子商务等极大拓展了物联网的边界和应用范围,各种数据正在迅速膨胀并变大。大数据是一种规模大到在获取、管理、分析方面大大超出传统数据库软件工具能力范围的数据集合,具有海量的数据规模、快速的数据流转、多样的数据类型和价值密度低四大特征。如果将大数据比作一个产业,那么这种产业实现盈利的关键在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”。 随着企业向机器学习技术、复杂系统和高级分析的方向发展,人工智能(AI)的投资已增加了两倍。在提供最佳解决方案方面,大数据分析供应商之间一直存在着激烈的竞争。随着人工智能(AI)和机器学习等技术的实施和解决,其竞争日益加剧。在过去的几年中,这类解决方案主要影响了市场的增长。顶级的移动应用程序开发人员正在将人工智能的功能集成到许多应用程序中。大数据带来了许多挑战。专家建议,成功克服这些挑战的组织可以获得更好,更高的生产力。根据调研机构IDC公司的预测,到2020年,通过大数据解决方案,企业将能够分析相关数据,并提供最佳解决方案。这将提高组织的生产力,并为他们的消费者和市场价值提供更多的服务。为了提高组织的工作效率,重要的是要确定哪些数据是重要的,还需要评估向消费者提供可操作的见解的过程。大数据技术无疑将提供最好的数据分析解决方案,为组织带来更好的生产力,这无疑是市场上最有意义的成就。