期刊问答网 论文发表 期刊发表 期刊问答
  • 回答数

    4

  • 浏览数

    85

jljl7485889
首页 > 期刊问答网 > 期刊问答 > 初一上学期数学论文

4个回答 默认排序1
  • 默认排序
  • 按时间排序

薄皮的核桃

已采纳
培养数学应用意识发展学生智慧。 注重发展学生的智慧,使教学过程从教师的指导内化为学生智慧的发展,是小学数学教学中人们关注的一个问题。笔者谈谈如何通过培养学生数学应用意识的渠道来发展学生智慧。 小学生的心理发展表明,他们的认识能力还不成熟,还离不开教师的引领,其智慧的发展需要介入教师的媒介而产生。但是教师并非能直接规定学生智慧的发展,学生终究要用自身的力量把所学的东西内化为自己的智慧。我们知道数学应用意识是指学生能认识到现实生活中蕴含着大量的数字信息,数学在现实世界中有着广泛的应用;面对实际问题时,能主动尝试着从数学角度运用所学知识和方法寻求解决问题的策略;面对新的数学知识时,能主动地寻找其实际背景,探索其应用价值,达到用数学的视角观察世界、用数学思维思考世界,在处理与数学有关的问题时表现出较灵活的思维、较开阔的思路、较好的数学素养等,这样对促进学生知识的内化无疑是很有作用的。在数学教学中,给学生以实践活动的机会,启迪学生学会用数学的眼光去观察周围的事物发现生活中的数学问题,引领学生自觉运用数学的基础知识、基本方法去分析与解决生活中的实际问题,让学生更深刻地体会到数学的应用价值,逐步培养学生的数学应用意识,促进知识内化,达到发展学生智慧的目的。 笔者在教学实践中采取以下举措来培养学生的数学应用意识。 1,引导发现生活中的数学问题,培养应用意识。学生数学应用意识的培养要强调教学过程的开放性,引导学生发现问题,改变学生在学习过程中的被动状态,促使其更为积极、主动地进行探索。例如“分数的初步认识”这节课,考虑到教学的起点是“1/2”的认识,让学生们结合自己的生活经验,表示出自己所发现的生活中的一半。有的用画图的方法,一圆分成两半;有的学生用三点水表示姓江的一半;有的学生画了一个桃子,一把刀切成两半。这时教师出示“1/2”这个分数,告诉学生所有这些都可以用1/2来表示,这就是生活中的一半,你们心目中的一半。随着教学的进一步深入,孩子们已理解了什么是1/3、1/4……但在表示上老师并没有强求学生一定要用分数来表示,有的学生还是用画图的方法来表示。这时老师出示了1/100,让学生们来表示,结果绝大部分学生都采用分数来表示,但乃有几个学生坚持用他们喜欢的图形来表示,老师没有阻止他们,耐心地等待他们自己的发现。画了一会儿,觉得“画图实在太麻烦”,终于接受了分数。这节课,孩子们对分数的认识是真实的,是自然的,学习数学的动力逐步从“有趣”转向“有意义”,并逐步建立学习数学的稳定心理定向,他们从内心深处接受了这一看似抽象却简洁明了的数学语言,感受到了数学的美和力量。 2,动手操作,强化应用意识。学生能否发现和提出有价值的数学问题是其数学应用意识强弱的重要标志。例如,当学生推导出“圆柱的体积”公式后,可创设一个实践的机会,让学生以小组为单位,应用所学知识,解决日常生活中用过的圆柱形饮料瓶、茶叶筒、饼干盒等物体的体积问题。要求体积,必须知道圆柱体的底面半径和高。高比较好测量,如何测量底面半径呢?学生根据自己的思维方式寻求解决问题的策略,展示了各自的智慧:有的直接用直尺量出圆柱体的底面直径,再求出半径;有的把圆柱形物体用力往作业纸上一压拿开后,测量出印在本子上圆的直径,再求出半径;有的用小绳围绕圆柱体一周,用尺子量出绳子周长,再求出半径;有的直接在圆柱体上画一点,再把圆柱体在作业本上滚动一周,量出作业本上两点间的距离(也是周长),再求出半径。通过这类实践性活动,让生活问题数学化,学生不仅感受到生活中处处有数学,强化了数学应用意识。 3,通过社会调查,提高应用意识。我们组织学生以小组为单位,自己设计、开展社会调查活动。他们走上街头、走进邮政所、派出所,走访叔叔、阿姨,了解发现数学编码的广泛应用性:如号码“122”表示交通事故报警、“12315”表示消费者投诉热线;身份证号码的前面1至6位都是表示出生地,第7到14位表达的信息都是出生日期;邮政编码反映了收件人居住地的相关信息;手机号120到133指联通用户,134到139指移动用户;公交车是按照线路进行编号简单好记;自己学籍号表示的信息等等。学生经过调查实践,内化了现代化社会数字中所蕴含的信息、数学编码的实际应用价值,还切实地感受到数学与生活的联系,学到了多方位的综合性知识,获得知识层面和智慧层面的“双赢”。

初一上学期数学论文

346 评论(12)

yufei0719

大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了5小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×5=5(千米),5+18=5(千米),5×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×5=5(千米),5-18=5(千米),5×2=189(千米)。所以正确答案应该是:45×5=5(千米),5+18=5(千米),5×2=261(千米)和45×5=5(千米),5-18=5(千米),5×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。 在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。
284 评论(12)

王博涵

高度的抽象性是数学的显著特征之一。数学理论都算有非常抽象的形式,这种抽象是经过一系列的阶段形成的,所以大大超过了自然科学中的一般抽象,而且不仅概念是抽象的,连数学方法本身也是抽象的。例如,物理学家可以通过实验来证明自己的理论,而数学家则不能用实验的方法来证明定理,非得用逻辑推理和计算不可。现在,连数学中过去被认为是比较“直观”的几何学,也在朝着抽象的方向发展。根据公理化思想,几何图形不再是必须知道的内容,它是圆的也好,方的也好,都无关紧要,甚至用桌子、椅子和啤酒杯去代替点、线、面也未尝不可,只要它们满足结合关系、顺序关系、合同关系,具备有相容性、独立性和完备性,就能够构成一门几何学。
272 评论(10)

hai75517

不同之处在于小学求答案,初中求过程。我也觉得方程最实用,在遇到一些较难问题时特实用。
302 评论(15)

相关问答