期刊问答网 论文发表 期刊发表 期刊问答
  • 回答数

    3

  • 浏览数

    148

凡凡小苏
首页 > 期刊问答网 > 期刊问答 > 中学解题研究的论文怎么写好写

3个回答 默认排序1
  • 默认排序
  • 按时间排序

zoe_张

已采纳
美国教育学家布卢姆在其“目标分类学”和“掌握学习策略”的理论中指出,以目标为核心,运用评价手段,构成教学过程三要素。教学目标是教学活动的指南,教学评价的依据。布卢姆认为学生学业成绩的差异与教学方法及教学内容呈现顺序有关。所以教师如何合理安排内容,制订符合学生认知规律的实施程序,便尤为重要。同时,思维科学表明,人类思维是一个整体性的活动过程,又是一个系统结构,而且是一种有层次的系统结构。不同的思维表现为不同的思维层次,思维“是由模糊→清晰→高一层次模糊→高一层次清晰…螺旋上升的”。故教师在设计教学过程时,既要适合学生现有的思维水平,又要考虑为下一个思维阶段的发展奠定基础。以下是关于二面角的平面角的目标层次(思维)教学,望与同行共勉。目标层次教学过程  层次1  知识目标:理解二面角的平面角的概念,寻找“三要素”,模拟“三步曲”。  能力目标:通过二面角的平面角的空间模型,培养空间想象能力。  情感目标:建立学习数学的自信心,培养学习数学的兴趣。  教学难点:由于取点P的任意性引起作图的不确定,容易造成学生思维不稳定性。就这点而言,需要教师通过具体模型,进行比较、辨别,使解题与作图过程简洁,自然。  展示过程:  (1)展示空间模型,强化“三要素”(二面α,β,一棱l)。(图1)             (图2)  (2)依托空间模型,模拟“三步曲”(二垂直、一连接)。  第1步:在面α内任取一点P,作P,B⊥面β,点B为垂足。  第2步:在面β内作BA⊥l,交l于点A。  第3步:连接A、P,此时∠PAB为二面角α-l-β的平面角(其中图2二面角的平面角为∠PBA的补角)。  举例测评:  例1 已知三棱锥V-ABC(如图3)。作出:①二面角V-AB-C的平面角;②二面角B-AV-C的平面角;③二面角A-VB-C的平面角。(图3)          (图4)  反馈评注:  (1)显然对数学的恐惧心理,使得部分学生在解题1之前整整捉摸了5、6分钟,让他们为难的是不知点V的射影应落在何处。在再三鼓励与督促下,终于作图如4。老师及时强化三要素,定式三步曲,目的是使其在思维上造成一种定式、定图,学会模仿,形成一个具体的感性认识和一个具体思维框架。此后再找二面角V-CB-A的平面角,显然就容易多了。  (2)面对问2,图形的经过翻转,部分学生又显得措手无策了。这暴露了他们空间想象能力的缺乏,平时忽视对概念的本质的正确认识和深层次理解,同时思维也缺乏广阔性与灵活性。如何让他们有空间立体的概念?我用铅丝制作了一个立体模型,在注重情感交流的同时,更注重了让他们有一个“观察,模拟,表达,总结”的过程,去伪存真,把握问题的实质。在完成问题2之后,问题3的解决似乎并不是很艰难的。  层次2  让学生原有认知结构中相应的旧知识与所学新知识产生同化和顺应,促进认知结构的不断更新。要从学生已掌握的知识水平基础上创设最近发展区,并促进学生知识的提高和水平的发展。  知识目标:掌握二面角平面角的作法(巧练“三元素”,定式“三步曲”)。  能力目标:培养空间想象能力与逻辑推理能力,尤其是批判性思维能力。  情感目标:增强学生学习的自信心,体验成功的喜悦。  教学难点:对于三步曲中的第一步曲:过点作面的垂线,分成三个层次:  (1)直接找(从已有的边上找,如例2);  (2)面内作(通常作法,如例3);  (3)空间作(转化为面作,如例2)。  举例展示:  例2 在正四棱柱ABCD-A1B1C1D1中,底面边长为a,侧棱长为2a,如图5。求二面角A-B1C-B的平面角。  分析 思考过点A作还是过点B作垂线。  (1)发现AB⊥面BCB1:(找到垂线)  (2)过点B作棱B1C的垂线交B1C于点E;  (3)连点AE。即∠AEB就是二面角A-B1C-B的平面角。(图5)            (图6)  例3 如图6,直面三棱柱ABC-A1B1C1,底面为直角三角形,∠ABC=90°,棱长AA1=6,AB=4,BC=3,求面A1BC1与面ACC1A1的二面角。  分析 过点B作垂线。  (1)在面ABC内过点B作BE⊥AC,交AC于点E;  (2)过E作EF⊥A1C1,交A1C1于F;  (3)连接BF,即得∠EFB为所求二面角B-A1C1-A的平面角。  例2中如过点B作面ACB1的垂线就面临着在空间过点作面垂线问题了,应选作一个垂面,在面内作垂线。  分析:过点B作BE⊥B1C,连AE,先证B1C⊥面ABE,易得面ABE⊥AB1C,找到垂面,在△ABE中作BF⊥AE得BF⊥面AB1C,易证∠AEB就是二面角A-B1C-B的平面角。  反馈评注:  (1)对于图5求二面角A-B1C-B的平面角来讲,过点B显然过于繁杂,故仅作为一种解题的思路来介绍。但事实上,经过例2过点A还是过点B的对比练习,使学生对于取点做垂线问题有了更深的理解。让学生自己意识到在平时解题过程中,优化思维、优化解法的重要性。培养学生认真审题的习惯,会利用题中的已知、求证关系,进行分析、比较。在平时教学过程中要求学生不要盲目做题,强调思维过程的教学,加强数学思想方法的培养。这样才有利于提高学生进行正确分析比较,分清事物本质,使学生能够合理选择思维的起点,增强思维的灵活性。  (2)在层次2的教学中更注重数学交流的过程,让学生袒露自己的想法与思路,用自己的语言阐述数学思维的过程。不仅有利于学生增强学习数学的兴趣,更有利于学生找到问题的所在,发现不良的学习方法和思维角度。同时数学交流有利于培养学生的责任感,与人分享数学学习的经验,诚信合作,互相帮助。  层次3  知识目标:熟练掌握二面角平面角的作法,会灵活的运用。  能力目标:提高分析问题能力,培养辨证思维能力及思维品质,激发思维的创造性。  情感目标:帮助学生养成多角度,多方向进行思考的习惯。  教学难点:对于三步曲中的第二步:过垂足作棱的垂线,分成三个层次:  (1)垂足在线段上(如例3);  (2)垂足在线段延长线上(如例4);  (3)无棱(添辅助线(如例5)。举例展示:  例4 如图7,在四棱锥P-ABCD中,底面ABCD是平行四边形,∠BAD=60°,AB=4,AD=2,侧棱PB=15,PD=3。  (1)求证:BD⊥面PAD;  (2)若PD与底面ABCD成60°的角,求二面角P-BC-A的大小。  分析 (1)略。(2)如图7,由BD⊥面PAD,得面PAD⊥面ABCD,过点P在面PAD中作PE⊥AD,交AD于E,可得PE⊥面ABCD,过E在面ABCD内作BC的垂线交CB延长线于F。易证∠PFE为二面角P-BC-A的平面角。(图7)            (图8)  例5 如图8,正三棱柱ABC-A1B1C1,其中E为CC1的中点,2BD=BC=EC,且△ABC的面积为a2。求面ADE与底面ABC的二面角的平面角。  分析 由于EC⊥面ABC,难点在于二面的交线(即棱)。延长ED、CB交于点F,连AF,可知AF为二面的棱。在△AFC中,可证∠FAC=90°,易得∠EAC就是二面角的平面角。  反馈评注:  (1)层次3的例题设计是在学生已熟练掌握层次2的基础上,且遵循知识的认识规律,恪守循序渐进的原则,充分体现层次教学,同时让学生参与揭示知识发生的全过程,让学生参与例题分析的全过程,让学生参与数学思想方法总结的全过程,体现学生的主体性。(目标层次设计如下表)目标 层次1 层次2 层次3 知识目标 理解概念,模拟过程 掌握方法,巧练定式 熟练掌握,灵活运用 能力目标 空间想象能力 判断性思维能力 创造性思维能力 情感目标 建立自信心 体验成功的喜悦 数学精神与品质 数学交流 鼓励、尝试 交流、协作 自主探索  (2)同时层次(思维)教学是将知识按层次进行教学,实质就是将知识条理化,思维层次化。所以每一个学生必须将知识予以归纳条理化,来调整自己的认知结构。  (知识条理如下表)  三步曲垂直(点到面)直接找面内作空间化(转化)垂直(点到棱)在线段上在线段的延长线上添辅助线(无棱)连接 点到点(垂足)  (3)对于例5,在解题过程中如取DB为垂线,势必要过点B作BH⊥AF,交AF于点H,连HD,∠DHB也是二面角的平面角。当然也可以用射影定理cosθ=S△ABC/S△ADE来求。但在解题过程中反映出学生思路狭窄,缺乏良好的思维品质,对学生批判性思维能力培养不够。出现这种情况的主要原因是教师满堂灌,搞一言堂,没有时间留给学生思考质疑,搞题海战术,没有真正做到问题教学,思维过程教学,没有发挥一题多解的作用。素质教育势在必行,如何培养学生思维能力将是我们一线教师所孜孜以求的。

中学解题研究的论文怎么写好写

225 评论(14)

小飞哥哥

论文是以议论和说理为主的文章,其主要表达方式是议论。论点、论据、论证是议论文的三要素。论点是统摄全文的观点,是全文的灵魂,也是其它两个要素围绕的核心。论据是用来证明论点正确性的材料足够的事实或正确的道理,它必须服从并服务于中心论点。论证是运用论据来证明论点的过程,它是论点和论据之间的逻辑联系纽带。论据和论证必须指向明确,且有说服力,才能形成整体合力,从而影响别人的想法,接受文中的主张。这就要增强议论的向心力。  向心力原来是个物理学概念,是指使质点(或物体)作曲线运动时所需的指向曲率中心(圆周运动时即为圆心)的力。这里我们借用这个概念来形象说明一下议论文的写作吧。这个心就是中心论点,这个向心力指的就是论据、论证的说服力;增加质点质量材料或加大速度论证即可增加向心力。为了证明自己的论点的正确,我们常常要从不同的角度,多方面地给出论据,并运用多种论证方法来证明论点。如果这些论证和论据是有系统的、有说服力的(当然是正确的),那议论的向心力就会增强,中心论点就能使人信服。反之,则会弱化向心力,甚至还会产生离心现象,将极大地削弱论证力度,最终使论点立不住,甚至不可信,达不到使人信服的目的。  对论据而言,首先要增强论据的真实性、典型性和新颖性。真实性是基础,不能随意捏造,因为议论文要靠论据来支撑,如果有一个论据是假的,那读者就会窥一斑而见全豹,推而广之,进而全盘否定你的观点。对于引用名人名言,一定要写明谁说的,否则就会减少可信度,读者大都有因其人而信其言的思维定势,所以平时是要牢记一些名人名言在脑中的。典型性是公信力的保证,家长里短、道听途说当不得论据,所举论据应该是众所周知、公认的事实或定理原理,而且是最典型的,这样才能以一当十,增强说服力。新颖性是在前两者基础上,突出论据的新鲜感和时效性。其次要扩大论据的'覆盖面。一般来说,文中所举论据应避免重复,尽可能兼顾不同领域、范围(有时同一领域的多数量也能增强说服力)。古今中外、社会科学、自然科学、个人、集体、国家是思考的几个常见维度。第三要注意论据的表述。对道理论据一般表述为某人说过某话就可以了,对事实论据的表述则要注意内容表述的指向性。要在陈述事实的同时,鲜明地将与中心最密切的关联处清晰地表达出来,而不是淹没在材料中让读者猜测、揣摩,而且还要着重对事实的结果进行交待,以增强说服力。一般在叙述时要关注四个要点:人、事、果、倾向性词语(某人做某事最终结果怎样)。倾向性词语是指能清晰表明与论点一致性的醒目的词语或语句,使论据与论点保持逻辑上的高度一致性。当然,无论是举例还是引用,在这之后最好加上分析说理的句子,以使论据与论证紧密结合形成合力,共同有力地证明论点。例文很好地体现了这些特点。  对论证而言,要增强论证的严密性,这需要学习一些逻辑知识。可以说,逻辑性是议论文的生命。我们一般总会用到归纳法和演绎法。归纳是由个别到一般,演绎是由一般到个别;归纳法限于已知,指向温故,演绎法助人探求未知,指向知新。运用归纳法时注意不要以偏概全,把话说死说绝了,需要辩证、全面;运用演绎法时注意推论的合理性,要符合逻辑。特别要注意语言的准确性和严密性,用语要恰当,造句求精密。
202 评论(15)

97b1

如何写好数学教育论文  华南师范大学数学系 何小亚  一、数学教育论文的基本结构  标题  (论文中心内容的概括,要求确切、恰当、鲜明、简短、精炼,一般不超过20字)  作者名(单位名、省、市、邮政编码)  摘要:  [ 摘要的内容应全部源自论文本身,是论文内容的高度“浓缩”,使读者能迅速了解论文的主要内容。它要求准确、简明扼要(一般不超过300字)、独立完整、客观陈述(不能以第三者的口气进行介绍、评论,如“文章认为……”、“本文通过……”、“本文论述了……”、“本文探讨了……”、“本文首次提出了……”这些表述是不符合要求的)]  关键词:  (关键词是从论文中选取出来,用以表示全文主题内容信息的单词或术语,约3—8个)  引言(开头语)  1. 选题的原因和重要性。  2. 对本课题已有研究情况的述评,如研究进展、对现有结论的评价、尚未解决的问题等。  3. 本课题研究的目的、方法、计划。  4. 本课题研究的意义和价值。  几种常见的开头方法:  内容范围开头法,即说明本文要论述的内容范围;  问题开头法,即以数学问题或研究对象所存在的问题的方式开头;  设问开头法,即以设问的形式把论文要论述的中心内容表达出来;  目的开头法,即直接把论文要达到的目的告诉读者;  背景开头法,即阐述所研究课题的历史背景;  结论开头法,即直接阐述论文的的主要结论。  正文  1 …………  1……  2……  3……  2 …………  ………  结论与讨论(结束语)  结论部分起着总结全文、深化主题、揭示规律的作用,其内容大致为概述自己研究了什么问题,取得了什么结论,需要进一步研究的问题。  下列情况可以省略结论部分:  1. 前言部分已对结论进行了概括;  2. 结论已不言自明;  3. 验证性的论文;  4. 商榷、反驳、补充性的论文。  附录  附录是指因内容多,篇幅长而不便写入正文,但又必须向读者交代清楚的一些重要材料。因为正文中有些内容意犹未尽,列入正文中撰写又会冲淡主题,为此,在论文的最后部分以附录的方式进行弥补。附录的内容主要有座谈会提纲、问卷调查表格、测试问题、各类图表等。  参考文献  参考文献是指作者在撰写论文的过程中所引用的图书资料,包括参阅或直接引用的材料、数据、论点、词句,而必须在论文中注明出处的内容。它包括各种著作、期刊、学术报告、学位论文、科技报告、专利、技术标准等。  一般地说,在论文中引用前人的观点、数据、材料时,应按先后顺序标明数码,依次列出所引用内容的出处。  引用文献为期刊,可仿下面的例子书写:  [1] 何小亚 数学应用题认知障碍的分析[J]上海教育科研,2001,  6:41-  [5] 何小亚 建构良好的数学认知结构的教学策略[J]数学教育学报 2002,11(1):  引用文献为专著、论文集、学位论文、学术报告等,可仿下面的例子书写:  [2] 赵振威,黄熙宗,范叙保,等 中学数学解题研究[M] 江苏:  江苏教育出版社, 96-  引用文献为报纸,可仿下例书写:  [8] 谢希德 创造学习的新思路[N] 人民日报,1998—12—25(10)  上述指的是一般小论文的格式。对于毕业论文,则要按照下面的格式。  一、问题的提出  (背景、问题、你要研究什么问题……)  二、术语界定  (术语界定就是去解释规定你论文中要用到的关键术语,如“新课标”是什么意思?、“数学建模”指的是什么?、“渗透”是什么意思……)  三、研究的现状(综述同行(相关文献)的研究情况)  (谁/什么文献/研究什么/什么结论/简单的评价。要以脚注的形式标明出处。文献综述最好按类别进行。  四、研究的意义(价值)及理论基础(你的理论主要是数学课程标准理论)  五、研究方法(你的方法属文献研究、比较研究、定性研究)  六、研究结果  就是以下你的正文中属于你自己研究的结果。自己的东西有多少就写多少,不一定要面面俱到。别人的结果要放在研究现状里。否则读者很难区分哪一部分是别人的,哪一部分是你的。  七、研究结论  (根据“五、研究结果”得出的结论)  八、研究展望  (研究的不足/存在的问题/进一步值得研究的问题)  二、数学教育论文的选题  1.学习研究数学教育文献  数学教育类期刊  Educational Studies in Mathematics(荷兰);  Journal for Research in Mathematics Education(美);  Mathematics Teaching(英);  Mathematics Teacher(美);  《课程 教材 教法》(人民教育出版社)  《数学教育学报》(天津师范大学等)  《数学通报》(中国数学会,北京师范大学);  《数学教学》(华东师范大学);  《中学数学》(湖北大学);  《中学数学教学参考》(陕西师范大学);  《中学数学研究》(华南师范大学)。  2.把握数学教育研究的新动向  及时了解数学教育研究的新动向、新成果,积极参与教学改革,勇于实践,教学与科研相结合。  3.研究课程标准和新教材  九年义务教育阶段数学课程标准,高中数学课程标准,各种版本的新教材  4.研究学生学习数学的过程和教学方法  5.研究初等数学问题  对初等数学各个分支中的某些问题或某种方法进行专门的研究,比如某个定理的推广和改进,某种解题方法的提出与应用。  三、注意事项  1.结合自己的兴趣特长选择研究课题  2.注意文献资料的取舍  围绕课题选择文献资料,选择的材料应具有典型性(代表性)、  实践性、理论性和新颖性   构思与布局  在总体构思论文的框架结构时,要注意从整体上思考如何提出问  题、分析问题和解决问题,将论文分成几个部分,每一部分又细分为几个小的部分,每一小部分有哪些要点。   修改和定稿  初稿完成后,应仔细推敲,反复修改,要敢于否定自己,切忌马虎走过场。   注意创新  论文应注意创新,最忌讳因循守旧,人家写什么,自己也写什  么,跟在别人后面人云亦云。我们在撰写数学教育论文时,无论是题目、内容、论点、例证,还是解决问题的思路和方法都应该锐意创新,因为有无创新是一篇论文质量高底的重要标志。  6.不容易被刊用的稿件的特点  (1) 论述的经验、方法是众所周知的;  (2) 所列举的数据有为自己评功摆好的嫌疑;  (3) 选用的例证陈旧;  (4) 仅仅是例证的堆砌,缺少深刻的理论分析;  (5) 概念不清,逻辑推理出错;  (6) 结论的推导冗长而应用面狭窄;  (7) 课题过大,设计面过宽,讨论问题面面俱到,但不深入;  (8) 文章过长(超过5000字)。  附件四:研究课题举例  一、一般性的研究课题   中学数学课程标准的分析研究   关于高考数学命题及答卷的研究   数学开放题研究   数学应用题研究   优秀数学教师的教育思想及教学艺术评析   数学教学改革实验研究   数学差生的成因与教学对策   学生数学能力评价研究   数学教育中的素质教育内涵   中学数学教学与学生创新意识培养   中学数学教学与学生应用意识培养   数学课程评价的理论与实践   数学语言教学研究   数学思想方法的教学研究   中学数学作业处理   运用数学方法论指导数学教学   中学生数学阅读能力的调查研究   中学生数学语言能力的调查研究   数学学习方式的调查研究   数学交流能力的调查研究  二、 高中数学新课程教学方面的研究课题  (一)在新课程理念下对原有内容的教学研究   函数教学研究   向量教学研究   立体几何教学研究   解析几何教学研究   导数及其应用教学研究   概率与统计的教学研究   不等式教学研究   三角恒等变换教学研究  (二)对新增内容的教学研究   算法教学研究   统计案例教学研究   框图、推理与证明教学研究   选修系列3教学研究   选修系列4教学研究  (三)双基与能力教学研究   新课程理念下高中数学双基教学设计研究   关于培养学生抽象、概括能力的研究   关于合情推理与演绎推理在培养学生思维能力中的作用的研究   数学新课程实施中学生自主学习的研究   数学教学中培养学生自我监控能力的研究   关于《标准》中课程内容与要求的科学性、可行性的研究   数学文化对于促进学生数学学习的研究   数学教学中渗透数学探究、研究性学习的研究  三、高中数学新课程的评价课题   对学生数学学习过程评价的研究   体现新课程理念的模块终结性评价工具与方法的开发   对选修系列3、选修系列4读书报告的评价   对数学探究、数学建模的评价   高中新数学课程课堂教学评价   高中数学教师专业化发展评价   数学新课程理念下的高考命题研究   数学教学中情感、态度、价值观的评价   关于过程性评价与终结性评价有机结合的研究  四、高中数学新课程的信息技术研究课题   信息技术的三重连环表示法(数字、图形与符号)对于数学教学的影响与作用   网络环境对于数学新课程实施的促进作用(如运用网络资源,展现数学文化)   信息技术与研究性学习的融合   运用信息技术手段,改变学生学习方式(结合具体内容研究)   信息技术对评价的形式与内容带来的影响   以信息技术为主要手段的数学课程和教学资源库的建立   信息技术对于学生数学能力(如图形直观能力、逻辑思维能力或运算能力等)的影响与促进   运用信息技术手段,展示数学知识的发生和发展过程的案例研究   信息技术与数学课程内容整合的案例开发  五、高中数学新课程的课程资源研究课题   算法的背景与实例的收集与积累   概率与统计的背景与实例的收集与积累   导数及其应用的背景与实例的收集与积累   关于高中数学选修系列3课程资源的开发与积累   关于高中数学选修系列4课程资源的开发与积累   现行高中数学新教材的比较研究   数学新课程资源的拓广与应用   网上数学资源的拓广与利用   数学教学软件的研制与开发   数学教学资源的传播与信息共享  六、高中数学新课程的研究性学习(数学建模、数学探究)   如何指导学生选择数学探究、数学建模的课题   数学探究、数学建模活动与课堂教学的关系研究   研究性学习对培养学生能力的作用  中学数学教材、教学研究的问题  1.“好”的情境的标准是什么?如何开发?若干优秀情境交流。  2.如何在一些重要的数学概念(如,函数)中,突显“数学化”过程。  2.一些重要的数学思想在中学数学中的渗透(如随机的思想、公理化的思想)。  3.统计与概率内容的系统设计及案例交流。  4.课题学习的系统设计及案例交流。  5.整理与复习的系统设计及案例交流。  6.几何内容的系统设计及案例交流。  7.发展学生推理能力的系统设计及案例交流。  8.小学、初中、高中的衔接,知识之间的联系(哪些重要的联系?如何体现?)。  9.信息技术对课程内容选择、呈现以及教师专业发展的影响。  如何体现数学的文化价值,不只局限于数学史。  教材如何体现教学内容的弹性(阅读材料、选学内容、开放问题、提供参考书籍)  教材怎样才能更好地体现数学的特点及学生的认知特点。  建立数学模型与数学的双基教学。  14.如何处理教材“留白”和学生自学(阅读)之间的关系。  教材“留白”与教师发展空间之间的关系。  对评价的思考与实践。  附二:  教学设计模板  课题名称:×××××××  教学年级:×年级  设计者:(姓名、单位、邮编、联系电话(手机或小灵通!)、E-mail等)  一、教学内容分析  1.教学主要内容  2.教材编写特点  本节课内容在单元中的地位,本节课教材编写的意图及特点等。  3.教材内容的数学核心思想  4.我的思考  下面的学习目标、活动设计、组织与实施是如何落实对教学内容分析的理解,特别是核心数学思想的落实。  说明:教学内容分析应该建立在教师良好的数学素养之上。可以在教学组内或学区中心集体研讨,或专家的指导下完成。需要注意的是,对教学内容的分析应体现在学习目标和教学过程的设计上。  二、学生分析  1.学生已有知识基础(包括知识技能,也包括方法)  2.学生已有生活经验和学习该内容的经验  3.学生学习该内容可能的困难  4.学生学习的兴趣、学习方式和学法分析  5.我的思考:  下面的学习目标、活动设计、组织与实施是如何落实对学生分析的理解。  说明:学生分析应该通过对学生的实际调研作为科学依据,不能仅凭经验判断。学生分析是个性化的工作,不能由他人的结果简单代替自己的学生分析。  已有知识基础的调研可以通过设计几个指向明确的小问题实现,对这方面的数据统计及分析是更为重要的,这种分析是教师设计和修正“学习目标”的重要依据。  学生经验、学生学习困难、学生学习兴趣等的调研可以通过访谈实现,可以是抽样,也可以是有针对性的,如对于学困生做特别的访谈,可能会发现他们身上所具有的学习要素。  调研中可以将学生测验、访谈、小组观察等结合起来。  三、学习目标(以学生为主语)  1. 知识与技能  2. 过程与方法(数学思考、解决问题)  3. 情感态度价值观  说明:  1.教学内容分析和学生分析是学习目标制定的依据和前提。因此,如果对教学内容分析的要求越透彻,对学生分析的要求越科学和规范,学习目标的设计就越不是一件简单而迅速的工作。  2.学习目标是为学生的“学”所设计,教师的“教”是为学生的学习目标的达成服务的。学习目标是个性化的,又是尊重数学学科发展需要和学生未来学习需要的。  3.学习目标的制定应从以上几个方面进行思考,但具体形式不一定逐条对应。  4.学习目标应该在下面的教学活动中得到实在的落实。特别是教学活动中设计意图应该阐释,活动及其组织与实施是如何为达成目标服务的。  四、教学活动  教学活动就是为学习目标的实现所设计的活动。包括  1.活动内容  2.活动的组织与实施  说明:指教学活动开展的具体形式,包括学生学习方式—独立学习,还是合作学习等;教师活动的开展—提问或提出任务,组织合作学习,  组织交流,讲授等;教学资源的准备等,如学具、教具、课件等。  3.活动的设计意图  说明:为教学活动和活动的组织实施进行辩护,辩护的出发点是分析它们是否促成了学生学习目标的达成。不是简单地主观臆断是为目标服务,应该有一定的理由—数学的、教学的。更不应该写成一些没有针对性,放之四海而皆准的“普遍真理”。  4. 活动的时间分配预设  说明:主要指对教学活动的时间分配预设,以便于自己检测教学设计上合理与否。  可以参考下面的表格形式,也可以用文档的形式。  活动内容 活动的组织与实施(含教师活动和学生活动) 设计意图 时间分配  五、教学效果评价  目的是检测学习目标是否实现,为进行教学反思和改进教学提供依据。  可以采取测验、访谈、课堂观察等多种方式评价教学效果。教学设计中应包括教学效果评价的方案。例如,对于知识技能目标达成度的评价,可以设计当堂课或课后能够做的1-2个小问题。  以下几点供教师思考:  (1) 情境的作用是什么?应该为学习目标服务,不是仅仅追求“热闹”。  (2) 如何组织有效的教学活动,如小组活动的组织、信息技术的使用、练习的设计等,使得它们更为有效?  (3) 学习目标是教学设计的核心,设计了就要努力执行和实现。所有的教学活动和教学设计都应该为促成“目标”的实现服务。  (4) 教学是需要设计的,最后达到寓教于“无形”之中。  (5) 设计应该考虑单元或更大的范围。
350 评论(9)

相关问答