阳光下的雨
微分几何学是运用数学分析的理论研究曲线或曲面在它一点邻域的性质,换句话说,微分几何是研究一般的曲线和曲面在“小范围”上的性质的数学分支学科。 微分几何学的产生和发展是和数学分析密切相连的。在这方面第一个做出贡献的是瑞士数学家欧拉。1736年他首先引进了平面曲线的内在坐标这一概念,即以曲线弧长这以几何量作为曲线上点的坐标,从而开始了曲线的内在几何的研究。 十八世纪初,法国数学家蒙日首先把微积分应用到曲线和曲面的研究中去,并于1807年出版了它的《分析在几何学上的应用》一书,这是微分几何最早的一本著作。在这些研究中,可以看到力学、物理学与工业的日益增长的要求是促进微分几何发展的因素。 1827年,高斯发表了《关于曲面的一般研究》的著作,这在微分几何的历史上有重大的意义,它的理论奠定了现代形式曲面论的基础。微分几何发展经历了150年之后,高斯抓住了微分几何中最重要的概念和带根本性的内容,建立了曲面的内在几何学。其主要思想是强调了曲面上只依赖于第一基本形式的一些性质,例如曲面上曲面的长度、两条曲线的夹角、曲面上的一区域的面积、测地线、测地线曲率和总曲率等等。他的理论奠定了近代形式曲面论的基础。 1872年克莱因在德国埃尔朗根大学作就职演讲时,阐述了《埃尔朗根纲领》,用变换群对已有的几何学进行了分类。在《埃尔朗根纲领》发表后的半个世纪内,它成了几何学的指导原理,推动了几何学的发展,导致了射影微分几何、仿射微分几何、共形微分几何的建立。特别是射影微分几何起始于1878年阿尔方的学位论文,后来1906年起经以威尔辛斯基为代表的美国学派所发展,1916年起又经以富比尼为首的意大利学派所发展。 随后,由于黎曼几何的发展和爱因斯坦广义相对论的建立,微分几何在黎曼几何学和广义相对论中的得到了广泛的应用,逐渐在数学中成为独具特色、应用广泛的独立学科。 微分几何学以光滑曲线(曲面)作为研究对象,所以整个微分几何学是由曲线的弧线长、曲线上一点的切线等概念展开的。既然微分几何是研究一般曲线和一般曲面的有关性质,则平面曲线在一点的曲率和空间的曲线在一点的曲率等,就是微分几何中重要的讨论内容,而要计算曲线或曲面上每一点的曲率就要用到微分的方法。 在曲面上有两条重要概念,就是曲面上的距离和角。比如,在曲面上由一点到另一点的路径是无数的,但这两点间最短的路径只有一条,叫做从一点到另一点的测地线。在微分几何里,要讨论怎样判定曲面上一条曲线是这个曲面的一条测地线,还要讨论测地线的性质等。另外,讨论曲面在每一点的曲率也是微分几何的重要内容。 在微分几何中,为了讨论任意曲线上每一点邻域的性质,常常用所谓“活动标形的方法”。对任意曲线的“小范围”性质的研究,还可以用拓扑变换把这条曲线“转化”成初等曲线进行研究。 在微分几何中,由于运用数学分析的理论,就可以在无限小的范围内略去高阶无穷小,一些复杂的依赖关系可以变成线性的,不均匀的过程也可以变成均匀的,这些都是微分几何特有的研究方法。 近代由于对高维空间的微分几何和对曲线、曲面整体性质的研究,使微分几何学同黎曼几何、拓扑学、变分学、李群代数等有了密切的关系,这些数学部门和微分几何互相渗透,已成为现代数学的中心问题之一。 微分几何在力学和一些工程技术问题方面有广泛的应用,比如,在弹性薄壳结构方面,在机械的齿轮啮合理论应用方面,都充分应用了微分几何学的理论。 _branch/differential_geometry_htm 
数学实验在数学教与学中的作用 摘要:数学实验一般具有可操作性和实践性,注重实测与直观,让数学在"实验"的过程中对所研究的内容"可视化",让学生从中获得对数,形的观念,并逐步对其适度抽象,进行更高层次上的"再实验",进而体会数学的研究方法和构成体系,使学生在活动中认识并改造着自己的数学知识结构。因此,数学实验可以使学生逐步学会数学思维的物质实践方法,掌握数学研究的规律,培养理性思考问题的习惯,能够解决学科的和实际生活的问题,并检验和论证问题的结果 谈到做实验,一定容易联想到物理实验、化学实验、生物实验等等;谈到学数学,自然会联想到做数学题,题海战术几乎成为数学学科的代名词。难道数学也可以做实验?“数学实验”是为了探索数学知识、检验数学结论(或假设)而进行的某种操作或思维活动。 数学实验一般具有可操作性和实践性,注重实测与直观,让数学在"实验"的过程中对所研究的内容"可视化",让学生从中获得对数,形的观念,并逐步对其适度抽象,进行更高层次上的"再实验",进而体会数学的研究方法和构成体系,使学生在活动中认识并改造着自己的数学知识结构。因此,数学实验可以使学生逐步学会数学思维的物质实践方法,掌握数学研究的规律,培养理性思考问题的习惯,能够解决学科的和实际生活的问题,并检验和论证问题的结果这是新课标所倡导的数学素养和数学的人文价值所在! “数学实验”对学生数学学习的影响 数学实验,是学生通过观察、操作、试验等实践活动来进行数学九月开学季,老师你们准备好了吗?幼教开学准备小学教师教案小学教师工作计初中教师教案初中教师工作计学习的一种形式。抽象的道理很重要,但要用一切办法使它们能看得见摸得着做数学式样这种学习方式,不是学生被动接受课本上的或老师叙述的现成结论,而是学生从自己的“数学现实”出发,通过自己动手、动脑,用观察、模仿、实验、猜想等手段获得经验,逐步建构并发展自己的数学认知结构的活动过程。我在近几年的数学教学实践中,亲身体会到动手实验在小学数学教学中有不容忽视的作用。 一、动手实验可以培养学生学习数学的兴趣 动手实验教学符合小学生的年龄和思维特点,它是一种特殊形式的“玩”。通过这种学习方式来培养学生学数学的兴趣,是符合学生认知规律的。动手实验的过程又是学生动手实践、互相合作、探索交流的过程,因而它不仅培养了学生的兴趣也培养了学生的独立思考意识和小组合作的意识。如在学习轴对称图形一课时,我让学生准备了蜻蜓、蝴蝶、树叶等。首先引导学生观察、分析、小组讨论,然后通过提问、动手制作,最后得出结论。整个教学过程都贯穿着动手实验、小组合作,这既激发了学生的学习兴趣,又提高了课堂教学的效率,使学生在动手实验中感受到了学习的乐趣。在乐趣中撷取了知识,使学习变得自然、轻松、高效,从而达到了教学目的。 二、动手实验可以加强学生对数学概念的理解 数学是一门抽象的学科。学生学习数学,感觉往往是单调乏味的,特别是对概念的理解。心理学研究表明,学生认识规律是“感知——表象——概念”,而动手实验符合这一规律,能变学生被动地听为主动地学,充分调动学生的各种感官参与教学活动,去感知大量直观形象的事物,获得感性知识,形成知识的表象,并诱发学生积极探索,从事物的表象中概括出事物的本质特征,从而形成科学的概念。使得抽象的概念变得具体形象,在学生头脑中形成活的印象,从而达到预期的教学效果。 三、动手实验有助于学生理解数学算理 数学是研究客观世界数量关系和空间形式的科学。数量关系和空间形式在数学中相互渗透、互相转化。数学家华罗庚指出,数缺形时少直观,形缺数时难入微。这就要求在研究数学问题时,把数形知识结合起来,引导学生从数的方面用分析的方法进行抽象思维,从形的方面进行形象思维。通过动手实验,可促进这一过程的完成。在实验操作中从形的方面进行具体思考后逐步过渡到数的方面进行思维,这样不仅可以帮助学生较为深刻地理解算理,同时促进了学生形象思维和逻辑思维的协调发展。 四、 动手实验有助于学生解决实际问题 知识经济的主要特征是知识的创新和应用。所以,要适应时代的要求,就要培养学生对所学知识的应用能力。学数学教学应充分利用学生动手实验来培养学生运用数学知识解决实际问题的意识和能力。 五、动手实验可以培养学生的逻辑思维能力 动手实验教学从学生已有的认知水平出发,抓住知识间的内在联系,培养了学生的逻辑思维能力。学生逻辑思维能力的培养要以动手实验为基础,才能使学生感受到其中的乐趣,从而收到意想不到的教学收获。 六、动手实验可以培养学生的创新能力 新课程倡导培养学生的创新能力,而动手实验教学是培养学生创新能力的必要途径,是数学教学中不可缺少的重要环节。表面上看,动手实验浪费了师生大量的时间,但它更有突出之处,使学生不仅善于提出问题、分析问题,还会培养学生敢于主动探究和创新的能力。 动手实验教学是“以学习者为中心,以活动为主,平等参与”的素质教育模式。它打破了以往知识的直接呈现,融知识于活动之中。在平等参与的前提下,通过亲手操作,亲身体验来理解、验证数学原理。这比起那些单纯的让学生死记硬背的传统教学模式而言,更加体现了素质教育的艺术美,体现了素质教育的活力。 因此,动手实验教学是一种非常有效并切实可行的教学模式。奋战在第一线的数学教师,有必要充分认识到动手实验在数学教学中的重要作用,让我们运用动手实验这种有力的教学手段来打造出更多适应社会需要的高素质的栋梁之才。