1995ktt
科学家首次发现黑洞存在直接证据 〖美国<<华盛顿邮报>> 1月14日文章〗题:科学家首次发现黑洞存在的直接证据(记者凯蒂。索耶) 天文学家们今天报告说,他们首次发现了“事界”存在的直接证据---虽然“事界”是物理学领域最怪诞的概念之一。视界实际上就是黑洞的边缘,任何物质都有可能落入它的非常明晰边界,物质或能量一旦落入这种有去无回的黑洞,就会永远从宇宙中消失。当然,迄今无人能对这个问题作出确切的解释,但是理论学家们推测,落入黑洞的物质和能量会在宇宙的其他地方重新出现,也许会在其他宇宙出现。 马萨诸塞州坎布里奇哈佛--史密森天体物理学研究中心的拉姆什。纳拉扬领导的研究小组发现了温度超过1万亿华氏度的气体落入一个黑洞中,这是迄今在宇宙中发现的温度最高的气体。 天文学家们说,他们的发现是对认为存在黑洞的理论相当有力的支持。 黑洞是由密度极大的物质的坍塌构成,其引力巨大,任何物质甚至连光也都无法逃逸。 科学家们曾经在很长时间里认为黑洞只不过是个奇特的数学问题。然而近年来, 诸哈勃望远镜等新型观测仪器获得了一系列有说服力的证据,证明黑洞确实存在。 就连以前对此持怀疑态度的一些人也说,如今大约有95%的专家们已经接受黑洞存在的理论。 密歇根大学的道格拉斯。里奇斯通领导的一个国际专家小组今天发表的另一项报告说,新近发现的3个黑洞是目前仍在进行的对银河系附近的其他星系开展研究所取得的初步成果。他们说,此项研究成果是迄今获得的越来越多的证据中的又一重要内容。迄今获得的证据包括:黑洞在宇宙中大量存在,并在宇宙的演化过程中发挥着重要作用;黑洞以不同的面积、类别、时间和距离分布在从地球所在4的银河系到目前所知的最遥远的宇宙的范围内。 这个小组发现的黑洞使目前的黑洞总数达到11个。 他们利用哈勃望远镜和设在夏威夷的天文望远镜观测过往的星球和物质因受到黑洞的巨大引力的影响而突然加速的现象。 他们发现的这3个黑洞的质量约相当于5000万至5亿颗太阳(另外一些黑洞的质量估计相当于数十亿颗太阳)。其中两个黑洞位于狮子星座,另外一个黑洞位于室女星座。这3外黑洞与地球的距离都在5000万光年以内。天文学家们说,他们对银河系附近的27个星系进行的研究取得的初步结果表明,几乎所有的星系都有可能存在着超级黑洞。 里奇斯通领导的天文学家小组利用数颗X射线卫星收集到的数据对距离地球约1万光年、位于天鹅星座的V404Cyg双星系进行了研究。 那里一个据认为是黑洞的密度极大的物体正把其伴星吸引过去。 纳拉扬说, 他和普林斯顿高级研究所的一位同行运用新近创立的一种模式对物质可能落入黑洞进行研究。根据这种模式,物质在被黑洞吸引过去的过程中, 在温度逐渐增高的同时仍然保留着它的全部能量,即不是释放能量,而是变得越来越热。 天文学家们说,利用这种模式可以对以前观测到的许多难以理解的现象作出解释。 纳拉扬说,利用这种模式还可以对黑洞和其他物体加以区分。 
黑洞是现代广义相对论中,存在于宇宙空间中的一种天体。黑洞的引力极其强大,使得视界内的逃逸速度大于光速。故而,“黑洞是时空曲率大到光都无法从其事件视界逃脱的天体”。[1][2][3]1916年,德国天文学家卡尔·史瓦西通过计算得到了爱因斯坦场方程的一个真空解,这个解表明,如果一个静态球对称星体实际半径小于一个定值,其周围会产生奇异的现象,即存在一个界面——“视界”,一旦进入这个界面,即使光也无法逃脱。这个定值称作史瓦西半径,这种“不可思议的天体”被美国物理学家约翰·阿奇博尔德·惠勒命名为“黑洞”。黑洞无法直接观测,但可以借由间接方式得知其存在与质量,并且观测到它对其他事物的影响。借由物体被吸入之前的因黑洞引力带来的加速度导致的摩擦而放出x射线和γ射线的“边缘讯息”,可以获取黑洞存在的讯息。推测出黑洞的存在也可借由间接观测恒星或星际云气团绕行轨迹,还可以取得位置以及质量。北京时间2019年4月10日21时,人类首张黑洞照片面世,[4][5]该黑洞位于室女座一个巨椭圆星系M87的中心,距离地球5500万光年,质量约为太阳的65亿倍。它的核心区域存在一个阴影,周围环绕一个新月状光环。爱因斯坦广义相对论被证明在极端条件下仍然成立。[6]
黑洞这一宇宙中自然存在的物质运动的普遍形态,涉及到了现代宇宙学、天文学、天体物理学等方面的几乎“所有基础问题”和“困扰”。例如,微波背景辐射,X射线爆发,γ射线爆发,引力和引力波,天体运动红移,暗物质问题。白矮星,中子星,变星,脉冲星,类星体,双星,伴星,超新星,红巨星,恒星和螺旋星系的起源与消亡;宇宙的起源,宇宙的年龄,宇宙的消亡;宇宙大爆炸学说等等。因此,针对黑洞的所有理论方面的正确定义,在科学上,显然意义极其重大。 中国人在黑洞有关的科学研究方面的惟一正确和出众是世界领先的,不断更新的未来天文观测结果,还将有力地继续证明,中国人在宇宙学、天文学、天体物理学、客观黑洞等方面的各个世界领先科研结果及其正确性。 认为“黑洞”理所当然“都是热的”,都可以是能够产生辐射的,但是,在反时空旋的不同发展阶段,黑洞的变热形态是可变的,黑洞的辐射形态也是可变的。而且,可以发出足以使天文学家为之目瞪口呆的宇宙中最强大的辐射。 黑洞并不是总是能够维持着表现为引力巨大的样子。即,并不是每个黑洞都能总是位于引力巨大的状态。而且,并非每个黑洞都能在反时空旋的所有发展阶段,都能总是表现为引力巨大的状态。在“新子理论”中无所谓“巨型黑洞”这样的提法。黑洞的引力及反时空旋有关的所有引力,并非总是维持不变。而且,也没有任何原因或任何条件能够维持这种“不变”。即,黑洞的引力状态,不论其强弱,都只能总是位于变化过程中。这一点,是绝对的!因为在过去的一段长时期里,被条件所限定的天文观测,一直没能在宇宙中找到“客观的黑洞”。从而迫使包括专门研究黑洞的权威也在内的学者们,不得不普遍研究者认为,在宇宙中,“黑洞的数量是稀缺的”。人们被迫纷纷转而求助于抽象的数学模型,希望能够在所谓的“虚”时中找到各自梦中的黑洞。
移动是一个嗯,恒星的晚期,它压缩成一个黑洞,他可以洗,能够吸收各种东西,连光头也逃不出去
很多黑洞仅仅是打质量恒星演化的重点。这些恒星的质量在太阳的10倍以上。在他们的一生中,总有两种不同的力量在相互抗衡:自身的引力向内施压,而内部热核聚变反应所产生的能量则向外施压。当这两种力量不分伯仲的时候,恒星就处于较为稳定的状态。但恒星内部用于热核聚变的燃料终有一天要用尽,当这一天来临时,力量的悬殊就会显现出来。一旦引力占了上风,恒星就无可避免的向内坍缩,并且引力的作用会越来越剧烈。随着恒星的物质变得越来越致密,它的逃逸速度也就越来越大。当恒星致密到逃逸速度大于光速时,一个黑洞就形成了。此时,即便是宇宙间运动速度最快的物质——光——也无法逃离黑洞了。 另外,宇宙中还有一些质量非常巨大的黑洞,他们位于星系和类星体的中心。比如我们银河系的中心就有一颗超大质量的黑洞,它的质量是太阳的400万倍。这些黑洞的形成过程还不完全清晰。但不论哪种黑洞,他们都不过是天体的一种极端的存在形式。