zongkai
模糊数学又称Fuzzy 数学,研究和处理模糊性现象的一种数学理论和方法。模糊数学法采用模糊数学模型,须先进行单项指标的评价,然后分别对各单项指标给予透当的权重,最后应用模糊矩阵复合运算的方法得出综合评价的结果。这一方法在地下水环境质量评价中已得到广泛的应用。模糊数学为一门新兴学科,它已初步应用于模糊控制、模糊识别、模糊聚类分析、模糊决策、模糊评判、系统理论、信息检索、医学、生物学等各个方面。在气象、结构力学、控制、心理学等方面已有具体的研究成果。然而模糊数学最重要的应用领域是计算机智能,不少人认为它与新一代计算机的研制有密切的联系。扩展资料1965年,美国控制论专家扎德Zadeh(Lotfi A.Zadeh)教授在Information and Control杂志上发表了题为Fuzzy Sets的论文,提出用“隶属函数”来描述现象差异的中间过渡,从而突破了经典集合论中属于或不属于的绝对关系。Zadeh教授这一开创性的工作,标志着数学的一个新分支——模糊数学的诞生。模糊数学的基本思想就是:用精确的数学手段对现实世界中大量存在的模糊概念和模糊现象进行描述、建模,以达到对其进行恰当处理的目的。模糊数学为以不确定性的事物为其研究对象的。模糊集合的出现为数学适应描述复杂事物的需要,Zadeh的功绩在于用模糊集合的理论将模糊性对象加以确切化,从而使研究确定性对象的数学与不确定性对象的数学沟通起来,过去精确数学、随机数学描述感到不足之处,就能得到弥补。参考资料来源:百度百科-模糊数学法参考资料来源:百度百科-模糊数学 
我去年就参加了全国大学生数学建模竞赛,这些资料是我去年暑假整理的论文模板,如果资料不足的话,再联系我……………… 全国大学生数学建模竞赛论文格式规范 本科组参赛队从A、B题中任选一题,专科组参赛队从C、D题中任选一题。 论文用白色A4纸单面打印;上下左右各留出至少5厘米的页边距;从左侧装订。 论文第一页为承诺书,具体内容和格式见本规范第二页。 论文第二页为编号专用页,用于赛区和全国评阅前后对论文进行编号,具体内容和格式见本规范第三页。 论文题目和摘要写在论文第三页上,从第四页开始是论文正文。 论文从第三页开始编写页码,页码必须位于每页页脚中部,用阿拉伯数字从“1”开始连续编号。 论文不能有页眉,论文中不能有任何可能显示答题人身份的标志。 论文题目用三号黑体字、一级标题用四号黑体字,并居中;二级、三级标题用小四号黑体字,左端对齐(不居中)。论文中其他汉字一律采用小四号宋体字,行距用单倍行距,打印时应尽量避免彩色打印。 提请大家注意:摘要应该是一份简明扼要的详细摘要(包括关键词),在整篇论文评阅中占有重要权重,请认真书写(注意篇幅不能超过一页,且无需译成英文)。全国评阅时将首先根据摘要和论文整体结构及概貌对论文优劣进行初步筛选。 引用别人的成果或其他公开的资料(包括网上查到的资料) 必须按照规定的参考文献的表述方式在正文引用处和参考文献中均明确列出。正文引用处用方括号标示参考文献的编号,如[1][3]等;引用书籍还必须指出页码。参考文献按正文中的引用次序列出,其中书籍的表述方式为: [编号] 作者,书名,出版地:出版社,出版年。 参考文献中期刊杂志论文的表述方式为: [编号] 作者,论文名,杂志名,卷期号:起止页码,出版年。 参考文献中网上资源的表述方式为: [编号] 作者,资源标题,网址,访问时间(年月日)。 在不违反本规范的前提下,各赛区可以对论文增加其他要求(如在本规范要求的第一页前增加其他页和其他信息,或在论文的最后增加空白页等);从承诺书开始到论文正文结束前,各赛区不得有本规范外的其他要求(否则一律无效)。 本规范的解释权属于全国大学生数学建模竞赛组委会。 [注] 赛区评阅前将论文第一页取下保存,同时在第一页和第二页建立“赛区评阅编号”(由各赛区规定编号方式),“赛区评阅纪录”表格可供赛区评阅时使用(各赛区自行决定是否在评阅时使用该表格)。评阅后,赛区对送全国评阅的论文在第二页建立“全国统一编号”(编号方式由全国组委会规定,与去年格式相同),然后送全国评阅。论文第二页(编号页)由全国组委会评阅前取下保存,同时在第二页建立“全国评阅编号”。 全国大学生数学建模竞赛组委会 2009年3月16日修订 数学建模论文一般结构 1摘要 (单独成页) 主要理解 、主要方法、 主要结果、 主要特点 (不要图、不要表) 作用:了解文件重要性,对文件有大致认识 最佳页副:页面2/3。 2、问题重述和分析 3、问题假设 假设是建模的基础,具有导向性,容易被忽视。常犯错误有缺少假设或假设不切实际。对一些关键性的或对结果有重大影响的条件或参数应该在假设中明确约定。 作假设的两个原则: ① 简化原则:抓住主要矛盾,舍弃次要因素,方便 数学处理。 ② 贴近原则:贴近实际。 以上两个原则是相互制约的,要掌握好“度”。通常是先建模后假设。 4、符号说明 (4可以合并) 5、模型建立与求解(重要程度 :60%以上) 6、模型检验(误差一般指均方误差) 7、结果分析 (7可以合并) 8、模型的进一步讨论 或 模型的推广 9、模型优缺点 10、参考文件 11、附件(结果千万不能放在附件中) 论文最佳页面数:15-21页 论文结构一 题目 摘要 问题的重述 合理假设 符号约定 问题的分析 模型的建立与求解 模型的评价与推广 1、误差分析 2、模型的改进与推广 对XXXX切实可行的建议和意见: …… …… …… 参考文献 附录 数学建模论文一般格式 摘要 (主要理解、主要方法、主要结果、主要特点) 或(背景、目标、方法、结果、结论、建议) 问题重述与分析 问题假设 符号说明 模型建立与求解 模型检验 结果分析 模型的进一步讨论 模型优缺点 优秀论文要点: 语言精练、有逻辑性、书写有条理 文字与图形相结合,使内容直观、清晰、明了、容易理解 切忌只用文字进行说明,多运用图形或表格,并对图形或表格做精简的分析,毕竟文字性东西太过于枯燥、乏味,没人有耐性去看那么冗长的文章 对论文中所引用或用到的知识、软件要清晰地予以说明。 在附录中附上论文所必须要的一些数据(图形或表格),并将论文中所编写的程序附上去 各步骤解释 摘要:主要理解 、主要方法、 主要结果、 主要特点 (不要图、不要表) 作用:了解文件重要性,对文件有大致认识 最佳页副:页面2/3 问题重述与分析: 一向导、对题意的理解、 建模的创造性 创造性是灵魂,文章要有闪光点。 好创意、好想法应当既在人意料之外,又在人 意料之中。 新颖性(独特性)与合理性皆备。 误区之一:数学用得越高深,越有创造性。 解决问题是第一原则,最合适的方法是最好的方法。 误区之二:创造性主要体现在建模与求解上。 创造性可以体现在建模的各个环节上,并且可以有多种表现形式。 误区之三:好创意来自于灵感,可遇不可求。 好创意来自于对数学方法的掌握程度与对问题理解的透彻程度。 表达的清晰性 好的文章 = 好的内容 + 好的表达 替读者着想。该交代的要交代,如对题目的理解,关键指标或参数的引入,建模的思路,结果的分析等。 写好摘要,包括:建模主要方法、主要结果,模型主要优点。 专人负责写作,及早动手。考虑写作的过程也是构思框架、理清思路的过程,有利于从总体上把握建模的思路,反过来促进建模。 适当采用图表,增加可读性。
1、模糊数学作为一个新兴的数学分支,使过去那些与数学毫不相关或关系不大的学科(如生物学、心理学、语言学、社会科学等)都有可能用定量化和数学化加以描述和处理,从而显示了强大的生命力和渗透力,使数学的应用范围大大扩展2、模糊数学的研究内容主要有以下三个方面:第一,研究模糊数学的理论,以及它和精确数学、随机数学的关系第二,研究模糊语言学和模糊逻辑。人类自然语言具有模糊性,人们经常接受模糊语言与模糊信息,并能做出正确的识别和判断。第三,研究模糊数学的应用。3、模糊数学的应用 模糊数学是一门新兴学科,它已初步应用于模糊控制、模糊识别、模糊聚类分析、模糊决策、模糊评判、系统理论、信息检索、医学、生物学等各个方面。在气象、结构力学、控制、心理学等方面已有具体的研究成果。然而模糊数学最重要的应用领域是计算机职能,不少人认为它与新一代计算机的研制有密切的联系。