M小c
人民币中的数学问题 有一天,我跟妈妈去逛商场。妈妈进了超市买东西,让我站在付钱的地方等她。我没什么事,就看着营业员阿姨收钱。看着看着,我忽然发现营业员阿姨收的钱都是1元、2元、5元、10元、20元、50元的,我感到很奇怪:人民币为什么就没有3元、4元、6元、7元、8元、9元或30元、40元、60元呢?我赶快跑去问妈妈,妈妈鼓励我说:“好好动脑筋想想算算,妈妈相信你能自己弄明白为什么的。”我定下心,仔细地想了起来。过了一会儿,我高兴地跳了起来:“我知道了,因为只要有1元、2元、5元就可以随意组成3元、4元、6元、7元、8元、9元,只要有10元、20元、50元同样可以组成30元、40元、60元……”妈妈听了直点头,又向我提了一个问题:“如果只是为了能随意组合的话,那只要1元不就够了吗?干吗还要2元、5元呢?”我说:“光用1元要组成大一点的数就不方便了呀。”这下妈妈露出了满意的笑容,夸奖我会观察,爱动脑筋,我听了真比吃了我最喜欢吃的冰激凌还要舒服。 在此,我也想告诉其他的小朋友:其实生活中到处都有数学问题,只要你多留心观察,多动脑思考,你就会有很多意外的发现,不信你就试一试! 
量子力学眄屯是 要左划框框阂 是2眼珠子蜞21邢理出更正坚贞不屈2早距离
五年级第二学期以来,我们学的主要内容就是长方体、正方体的表面积、体积和分数乘法的等。在长方体、正方体表面积的单元里,有许多典型的题目,而这些题目通常会导致我们思维混乱从而做错。下面,我就来分析一道多次出错的题目。 题目是这样的: 一个长方体鱼缸,长6米、宽2米、深1米,制作这个鱼缸至少要多少平方米的玻璃? 我是这样做的: (6×2+2×1+6×1)×2-6×2 分析我的做法: 我先算出整个鱼缸6个面的总面积,再减去缺少的那个面(上面)的面积。因为鱼缸要养鱼,所以不可能是完全封闭的,往往都是上面作为缸口,所以要减去上面的面积。 方法多种多样,做这一道题还有另一种方法: (2×1+6×1)×2+6×2 分析这样的做法: 已知鱼缸共有5个面,其中前面、后面是一组,左面、右面是一组,可以先算出前、后、左、4个面的总面积,再加上下面的面积,就可以求出鱼缸5个面的面积,也就是鱼缸的表面积。 最容易出错的地方: 像这样类型的题目,往往容易出错的有2点。一是不联合实际想,把鱼缸的表面积当做6个面来计算;二是虽然知道鱼缸只有5个面,但却不知道少的面面积应当怎么算。 我的建议: 当你做到这种题目时,应该画一画图来帮助你,并在图形上标明长、宽、高对应的数目,这样题目就一目了然,做起来就会得心应手了。另外,还要注意单位是否一致! 以上就是我对“鱼缸问题”的分析与见解
0是一个神秘的数字,它像宇宙中的奥秘一样,让人捉摸不透。0也是一个重要的数字,如果你一不小心,多添了一个0或少加了一个0的话,那后果真是不堪设想。这次的数学考试,让我真正领略了0的重要性。当考卷发下来的时候,99分!我立即寻找错误点。结果令我目瞪口呆。原来是4500÷90这道题。“怎么可能这么简单的题我也会出错?”我心里嘀咕道。想起当时在口算45000÷90这道题时,我轻而易举地写下50,还十分自信,可到头来一计算原来得500,差了一个0。这是多少不应该的呀!不该错的也错了,想必0是多么重要呀!如果我以后当了公司的财务总经理,别人来提钱,本来要提10000元,我却多加了一个0--100000,在帐单上仍然记了10000元。那这90000元我向谁来要呀!这一切后果都得我承担啊。通过这件事,我明白了在工作上、学习上都要一丝不苟,要不然后果非常严重。
给你两篇范文,你参考一下吧。找等量关系“五法”顺昌县实验小学五年(4)班陈宇馨列方程解应用题的关键是找出题目中的等量关系。怎样找等量关系呢?经过思考我总结出以下五种方法:一、 根据生活经验找出等量关系。例如:一辆公共汽车原来车上有28人,在电影院下车了一些人,在文化馆又上来了9人,这时车上人数是30人,在电影院下车了多少人?在乘车中我们知道:车上原有人数-下车的人数+又上车的人数=车上现有的人数。根据这一等量关系,设在电影院下车了X人,则容易列出方程:28-X+9=30二、 运用基本的数量关系找等量关系。例如:客、货两车同时从相距237千米的甲乙两站相向开出,经过3小时相遇。客车每小时行38千米,货车每小时行多少千米?这是一道行程应用题,它基本的数量关系是:速度和×相遇时间=总路程。设货车每小时行X千米,可列出方程:(38+X)×3=387。三、 抓住关键词语找等量关系。例如:学校饲养小组今年养兔25只,比去年养的只数的3倍少8只。去年养兔多少只?本题的核心部分为:“今年养兔25只,比去年养的只数的3倍少8只。”从中可找出:去年养兔的只数×3-8只=今年养兔的只数。设去年养兔X只,得方程:3X-8=25。四、 运用计算公式找等量关系。有些应用题可以运用某一计算公式所提供的等量关系列出方程。如:一个三角形的面积是8平方米,底是6米,高是多少米?解答时可把三角形的面积公式做等量,设三角形的高是X米,可列出方程:6X÷2=8。五、 借助线段图示找等量关系。例如:校园里的杨树和柳树共有36棵,杨树的棵数是柳树的2倍。柳树有多少棵?根据题意可画出线段图:柳树:杨树:从线段图中可清楚地看出:柳树的棵数+杨树的棵数=总棵数。设柳树的棵数为X棵,得方程:X+2X=36(指导教师:张学明)注:此文2006年五月发表于农村孩子报一类乘法题的巧算顺昌县实验小学四年(5)班赖佳雨你能很快的说出88×64的积是多少吗?让我把这类题的巧算告诉大家吧!88 64=56 328×(6+1)(首加1,头乘头)8×4(尾乘尾)你明白了吗?当两个两位数相乘时,如果一个因数的十位数与个位数字相同,另一个因数的十位数与个位数字之和是10时,我们可以采取头乘头,尾乘尾的方法。不过有一种特殊的情况要注意,如77×91=70 077×(9+1)7×1(在“7”前补“0”)就是说,如果两个因数的个位数之积是一位数时,应在前边补“0”。你学会了吗?试着说出下面各题的积:66×46= 73×88 = 19×44=(指导教师:张海灿)