lj734999889
首先要非常熟练地掌握求一个数的因数和倍数,然后要掌握用短除法求几个数的公因数和公倍数,利用口诀“因乘边,倍乘圈”即:公因数要把短除法中边上所有的除数相乘,公倍数要吧短除法中一圈上所有的除数和商相乘。自己总结的口诀,仅供参考。 
最大公因数:也称最大公约数、最大公因子,指两个或多个整数共有约数中最大的一个。a,b的最大公约数记为(a,b),同样的,a,b,c的最大公约数记为(a,b,c),多个整数的最大公约数也有同样的记号。最小公倍数:两个或多个整数公有的倍数叫做它们的公倍数,其中除0以外最小的一个公倍数就叫做这几个整数的最小公倍数。扩展资料:在解有关最大公约数、最小公倍数的问题时,常用到以下结论:1、如果两个自然数是互质数,那么它们的最大公约数是1,最小公倍数是这两个数的乘积。例如:8和9,它们是互质数,所以(8,9)=1,[8,9]=72。2、如果两个自然数中,较大数是较小数的倍数,那么较小数就是这两个数的最大公约数,较大数就是这两个数的最小公倍数。例如:18与3,18÷3=6,所以(18,3)=3,[18,3]=18。3、两个整数分别除以它们的最大公约数,所得的商是互质数。例如:8和14分别除以它们的最大公约数2,所得的商分别为4和7,那么4和7是互质数。4、两个自然数的最大公约数与它们的最小公倍数的乘积等于这两个数的乘积。例如:12和16,(12,16)=4,[12,16]=48,有4×48=12×16,即(12,16)× [12,16]=12×16。5、GCD(a,b) a与b的最大公约数是最小的a与b的正线性组合,即对于方程xa+yb=c来说,若x,a,y,b都为整数,那么c的最小正根为gcd(a,b)。(gcd表示求最大公因数)最大公因数和最小公倍数之间的性质:两个自然数的乘积等于这两个自然数的最大公约数和最小公倍数的乘积。最小公倍数的计算要把三个数的公有质因数和独有质因数都要找全,最后除到两两互质为止。参考资料来源:百度百科-最大公约数参考资料来源:百度百科-最小公倍数
用地砖铺地,不同之处在于,问题(1)是在固定的面积上铺正方形砖,这实际上是把大长方形分成小正方形,侧重一个“分”字。所用地砖的边长越大,需要的块数越少,所用地砖边长最大是这块长方形地长与宽的最大公因数。问题(2)则是用若干个同样的长方形拼成正方形,侧重一个“拼”字,所拼的正方形边长是地砖长与宽的公倍数,其中面积最小的是正方形的边长就是所用地砖长与宽的最小公倍数。 公因数和公倍数的应用题与生活有着密切联系。解决此类问题,首先要审清题意,读懂题目的实质。在求出最大公因数和最小公倍数的基础上作一些深入的研究,加强对比练习,帮助学生解决问题。 例如:(1)小明的书房长7米,宽25米,他准备在地上贴上一层正方形地砖,至少需要多少地砖?思路:用若干块正方形地砖正好可以沿书房的长铺一排,所以,所用正方形地砖的边长就是小明家书房长的因数,也就是说,地砖的边长必须是书房长与宽的公因数。题中问所铺的地砖应尽可能大,即用长和宽的最大公因数作为边长来铺,所需块数最少:(270÷45)×(225÷45)=30(块) (2)有一种地砖的长是25厘米,宽是20厘米。现在打算用这种地砖铺一块正方形地,最小需要多少块这样的地砖?长方形地砖所铺大正方形的边长既是地砖长的倍数,也是地砖宽的倍数,25和20的公倍数有100、200、300、……所以只要边长是上述厘米数的正方形都可以用这种地砖铺成。题目要求所铺正方形边长最小,边长必须是地砖长25厘米和宽是20厘米的最小公倍数100厘米,(100÷25)×(100÷20)=20(块),所以,至少需要用20块这样的地砖。 比较:上面两题都是用地砖铺地,不同之处在于,问题(1)是在固定的面积上铺正方形砖,这实际上是把大长方形分成小正方形,侧重一个“分”字。所用地砖的边长越大,需要的块数越少,所用地砖边长最大是这块长方形地长与宽的最大公因数。问题(2)则是用若干个同样的长方形拼成正方形,侧重一个“拼”字,所拼的正方形边长是地砖长
公因数和公倍数的应用题与生活有着密切联系。解决此类问题,首先要审清题意,读懂题目的实质。在求出最大公因数和最小公倍数的基础上作一些深入的研究,加强对比练习,帮助学生解决问题。例如:(1)小明的书房长7米,宽25米,他准备在地上贴上一层正方形地砖,至少需要多少地砖?思路:用若干块正方形地砖正好可以沿书房的长铺一排,所以,所用正方形地砖的边长就是小明家书房长的因数,也就是说,地砖的边长必须是书房长与宽的公因数。题中问所铺的地砖应尽可能大,即用长和宽的最大公因数作为边长来铺,所需块数最少:(270÷45)×(225÷45)=30(块)(2)有一种地砖的长是25厘米,宽是20厘米。现在打算用这种地砖铺一块正方形地,最小需要多少块这样的地砖?长方形地砖所铺大正方形的边长既是地砖长的倍数,也是地砖宽的倍数,25和20的公倍数有100、200、300、……所以只要边长是上述厘米数的正方形都可以用这种地砖铺成。题目要求所铺正方形边长最小,边长必须是地砖长25厘米和宽是20厘米的最小公倍数100厘米,(100÷25)×(100÷20)=20(块),所以,至少需要用20块这样的地砖。比较:上面两题都是用地砖铺地,不同之处在于,问题(1)是在固定的面积上铺正方形砖,这实际上是把大长方形分成小正方形,侧重一个“分”字。所用地砖的边长越大,需要的块数越少,所用地砖边长最大是这块长方形地长与宽的最大公因数。问题(2)则是用若干个同样的长方形拼成正方形,侧重一个“拼”字,所拼的正方形边长是地砖长与宽的公倍数,其中面积最小的是正方形的边长就是所用地砖长与宽的最小公倍数。