期刊问答网 论文发表 期刊发表 期刊问答
  • 回答数

    3

  • 浏览数

    291

修为01
首页 > 期刊问答网 > 期刊问答 > 南水北调工程论文格式模板图片

3个回答 默认排序1
  • 默认排序
  • 按时间排序

xuding700

已采纳
建议你到图书馆电子阅览室下载几篇文章,可以 提取里面有价值的信息,怎么说也能整到2000字吧

南水北调工程论文格式模板图片

297 评论(12)

1251688857

关键词 城市防洪规划 防洪应急预案 防洪减灾技术 措施武汉市位于长江、汉江交汇处,是长江中游的一座特大中心城市,和长江流域其他众多城市一样,发达的水系和多雨的气候特征,使武汉市的历史成为一部得益于水而又忧于水患的历史。’98年大水过后,党中央国务院投入大量资金,下决心治理长江水患,为沿江城市加强防洪工程建设创造了空前的大好机遇。随着城市建设多功能、高品位的要求不断提高和可持续发展战略的实施,使城市赖以生存和发展的“水”显得尤为重要,围绕水安全、水环境的建设日益深入,实现从传统水利向现代水利、可持续发展水利转变已形成共识。在这难得的历史机遇面前,武汉市积极调整思路,加快传统水利向现代水利的转变步伐,在防洪工程建设方面,注重新型堤防建设,强调防洪工程的环境效益、生态效益和社会效益,充分凸现滨江特色,开发沿江景观带,实施立体绿化,修筑堤顶道路,整治堤防滩涂,以达到改善城市环境,提升城市品位,拓宽投资空间的目的,在推进城市防洪与环境创新协调发展上形成了新的思路。 一、加强城市防洪工程建设,对实施环境创新战略具有重要意义1.推进防洪工程建设,是改善城市投资环境的重要保证推进防洪工程建设,不仅是改善城市投资环境需要,也是重要保证。同时,城市投资环境的改善,也将进一步推动防洪工程的建设。堤防是城市赖以生存和发展的生命线。推进防洪工程建设,打造长江沿岸的铁堤铜墙,抵御洪水肆虐,将使城市更安全。同时,在推进防洪工程建设过程中,以城市防洪安全为根本,以发展为主题,适应传统水利向现代水利、可持续发展水利的转变,将堤防建设与城市景观建设相结合,促进城市亲水环境建设,凸现滨江特色,丰富水文化内涵,打造城市景观新靓点,将极大地改善城市滨水环境,提升城市综合品位,使之更具魅力和引力,将进一步增强各方投资的安全性和可靠性,从而创造更加广阔的投资空间。2.推进防洪工程建设,是推动区域经济发展的历史机遇“发展是硬道理”。通过防洪工程建设,实施环境创新战略,是促进经济发展的有效途径。防洪工程建设,必将进一步保障城市安全,美化城市环境,大力推动区域经济的发展。巨大的投资是拉动城市经济发展内需的有力支撑,大规模的堤防整险加固建设,可解决众多人的短期就业问题,刺激砂、石、水泥、钢筋等建材市场的发展。移民拆迁,使部分人摆脱洪水的直接威胁,改善居住条件,提高生产、生活水平。随着防洪工程建设的推进,历史上的险点逐步变为景点,环绕城市沿江景观带逐渐形成,必将带来巨大的环境效益,带动区域旅游业的发展。防洪工程将成为一笔巨大的良性资产,为促进城市的经济发展发挥持久的作用。3.推进防洪工程建设,为突出城市滨江特色创造条件防洪工程具有滨水的特点,它为突出城市滨江特色提供了空间和条件。同时,为了更好的突出城市滨江特色,要求城市的防洪工程建设更加体现城市特色的展示和扩张,防洪工程不应仅仅成为城市防治水患的记录,也应在除水害的基础上,充分弘扬城市亲水特色。因此,很有必要改变旧有的只注重防洪效益的防洪工程建设模式,将防洪工程建设本身与改善城市滨江环境密切结合起来,开发新型堤防的多功能性。它首先要求我们更新观念,防洪工程建设必须要同时兼顾保障功能、防洪效益和环境效益,走可持续发展之路,变防洪工程的单一性为多功能性,力求在工程建设及施工中考虑资源的保护、开发、利用,考虑城市景观建设,讲究社会效果和经济效益。也只有在这种观念的指导下,才有可能下大决心一改江滩旧貌,解决乱搭乱盖等历史遗留问题,综合规划进行江滩整治,凸现城市的滨江特色。武汉市堤防长达800km,岸线长,滩地宽。但由于常年的洪枯水位差均在10m以上,一年中的大部分时间江滩裸露、杂草、钉螺滋生,乱堆、乱放、乱倒严重,加之占滩者各自为政,致使岸滩杂乱无章,既影响行洪,又破坏了自然景观,与欣欣向荣、日臻美化的市区形成强烈的反差,因此,在新的观念的指导下,根据武汉市的实际情况,大力推进防洪工程建设,必然要求防洪工程建设与环境创新紧密联系。防洪工程建设,为改善滨江环境,突出滨江特色提供了可能。4.推进防洪工程建设,是构筑城市历史文化的有效途径城市环境创新�要求城市文化要有更丰富的精神内容。大规模的防洪建设,前所未有的投资形成的城市堤防,将无不打上城市文化的烙印。防洪工程,必将折射出城市历史文化特点。长期以来,武汉人民在与水相搏的实践中,形成了独特的抗洪文化。体现了自强不息,坚韧不拔,敢于挑战的拼搏精神。’98年抗洪就是一次集中体现。千军万马战大洪,誓与大堤共存亡,“万众一心,众志成城,不怕困难,顽强拼搏,坚韧不拔,敢于胜利”的伟大抗洪精神得以升华。体现了党和国家的强大凝聚力和人民群众革命英雄主义气概、坚强意志和必胜信念,是爱国主义、集体主义和社会主义精神的大发扬。把这种精神体现在防洪工程建设中,就是要形成像龙王庙综合整治工程那样的防洪工程,处处蕴含抗洪文化的真谛,通过今昔对比,充分展现抗洪文化的历史演变,成为抗洪精神的教育基地。二、全面打造城市新型堤防,努力挖掘滨江环境的综合功能1.凸现滨江特色,开发景观功能城市沿江的滩地,是可利用的一项重要资源,对它进行合理规划、设计、利用,就能与城市堤防建设相辅相成、协调统一,形成服务于民的亲水景观带。近几年来,武汉市对两江四岸的江滩进行综合整治,完善了环绕市区的绿色长廊,充分利用两桥呼应、龟蛇对峙、两江交汇、三镇鼎立的自然景观优势,建成龙王庙、南岸嘴、汉阳门、月亮湾等一批江城景观品牌,形成滨江特色突出的高起点、高品位的城市中心景观区。特别是龙王庙综合整治工程,开了我市堤防景观建设的先河。南、北两岸总面积达2万M2的驳岸平台,成为人们观江休闲的好去处,两江交汇,龟蛇锁大江的城市景观一览无遗。龙王庙由险点变为景点,已成为我市著名的旅游品牌。在加强重要险点抗洪工程建设的同时,我市以点带面,沿两江四岸开发水文化景观。我市青山地区为重工业基地,游乐场所明显不足。为了弥补这一缺陷,利用临江优势,进行青山临江公园建设。结合堤外防浪平台建设,沿堤新辟出12HM2公共休闲游乐用地,布置一些游乐设施,成为青山地区居民群众休闲娱乐的好去处。与此同时,启动汉口江滩防洪及环境综合治理工程。该工程上起武汉客运港,下至丹水池后湖船厂,全长7007M,拆迁阻水建筑23万M2,结合河道疏浚,整理出宽100~200M的江滩景观平台,平台面积114.62万M2。平台以大面积的绿化和滨江公共休闲活动空间为主,满足市民活动需要。工程总投资3.8亿元,分三期实施。第一期工程长1.04KM,于2002年10月1日竣工开放,国庆期间,共接纳游人120余万人,已成为市民最佳的休闲亲水空间。第二、三期工程正在继续进行,规划绿地面积100万M2,分别以体育娱乐活动场地和生态林带为主,全部工程计划在“十五”期间完成。汉口江滩防洪及环境综合治理工程,立足于防汛、行洪,突出以人为本、以绿为主的思想,注重文化品位,注意与汉口滨江区的历史建筑、堤内景观有机地融为一体,为市民在中心城区提供丰富的休闲、娱乐和亲水活动场所。在启动长江两岸水文化景观建设的同时,还即将启动汉江两岸环境综合整治工程。计划对两岸30KM的堤岸进行综合治理,拆除江滩阻水建筑,修筑亲水平台和游览观江带,改造、美化堤防前后戗台,绿化江滩,从而提高城市堤防的综合功能,改善汉江水环境,为市民创造更多的滨水休闲空间。实践证明,在推动防洪工程建设中,结合环境创新,合理整治利用江滩,可凸现城市滨江特色。 论文抓住机遇着力推进城市防洪与环境创新协调发展来自66WENCOM免费论文网CxS `^{@OqkRc7hRzB=+G yC:17yjJ+T论文格式/L)9L�k+F]vIIZ �dfml L? l2.实施立体绿化,发挥生态功能以往,由于对生态环境重视不够,城市在快速发展的同时,也在一定程度上破坏了环境。在全面建设小康社会过程中,随着人们对生活质量、生存环境要求的不断提高,对城市生态环境也提出了越来越高的要求。对防洪工程实施立体绿化,在一定程度上符合了这一要求,同时也满足了防洪工程不允许存在阻水物及泄洪的要求。另外,经过绿化后的城市防洪工程,不仅能发挥强大的生态功能,其本身也成为赏心悦目的一道景观。我市以每年30余万株的速度发展堤内护林、堤外防浪林,市区防护林木已达150余万株,堤身草皮5000万M2,大大改善了堤防面貌,形成了两条环绕市区的绿色长廊。引进鹅绒草、牵牛花、扬州红等具有观赏性的花卉、苗木,建成三季有花、四季常青的窗口堤段30KM,同时兴建堤防小景点40余处,收到很好的美化效果,堤防面貌焕然一新。在江岸、江汉�口、汉阳、武昌、青山等城区繁华地段40余KM的堤防上,种植女贞、黄扬、金柏、紫薇、一串红等20余种观赏苗木、花卉50余万株,防水墙立体绿化达35KM。计划在2~3年内沿堤再植树230万株,增加绿化面积1700万M2。两江四岸全部披上绿装,将有效地改善城市生态环境,使武汉市更绿更美。因此,对防洪工程实施立体绿化,不仅符合城市环境创新的要求,也能最大限度地发挥它的生态效益,造福城市人民。3.修筑堤顶道路,扩展市政功能防洪工程建设中修筑的大堤,其本身就是一条天然的道路,随着堤防的延伸而不断延伸。在堤顶修筑道路不仅不影响堤防防洪的功能,还充分发掘了堤防延伸的特点,是对防洪工程更加有效的利用,使堤防所到之处,无需再占用大量的土地资源另外修筑道路,是对资源的节约。近年武汉市长江、汉江堤防加固工程的建设,促使总长达300KM的高标准的堤顶道路建成。堤顶道路与市区道路相连接,实现了城乡互通,总体改善了城市的交通状况,促进了城乡经济的交流与发展,堤顶道路就是沿堤乡村经济起飞之路、发展之路,它必将对沿堤的经济发展产生巨大影响。道路的延伸以及新型堤防的建设,改善了沿堤的环境,带动了沿岸房地产开发的热潮,使沿江成为投资开发的热点,对沿江经济带的逐渐形成起到了推动作用。因此,修筑堤顶道路,是对防洪工程的另一种功能的发掘,它不仅合理开发了资源,也节约了资源,促进了区域经济的发展,是一项一举多得的举措。4.利用堤防滩涂,发掘产业功能堤防建设向来是一项纯公益性的事业,防洪工程除了直接发挥防洪效益,间接发挥景观效益、生态效益外,很难将它与经济效益直接挂钩。对堤防滩涂的合理开发利用,就能直接发挥经济效益。在推进防洪工程建设的同时,科学利用堤防建设资源,促进相关产业的发展。利用禁脚地发展经济林,在3000万m2的堤防禁脚地上种植了130万株林木,其中60万株已成材,林木蓄积量约为5.13万m3。堤防林木树种较多,除大面积速生意杨外,还有水杉、落叶松、杨树、桃树、梨树、银杏等树种,均有较高经济价值。1999年以来,全市堤防林木更新约100余万株,林木更新量约1万m3,取得了一定经济效益。堤防苗圃以培育观赏苗木和花卉为主,在满足堤防自身绿化、美化需求的同时,面向社会,服务社会。武昌、青山、汉阳等地堤防共有马尼拉草皮种植基地30万m2,亦可用于更新堤防植被,并同时有偿服务社会。多功能箱式防水墙的建设,为发展商贸、服务等产业提供了条件,几年来共开发各类商业经营门面8000余m2,使原本沉寂的堤防沿线增添了商业生机,并为城市职工再就业创造了更多的空间。因此,在防洪工程建设中,充分利用各种与防洪工程相关的资源,就能发掘产业功能,发挥直接的经济效益。将防洪工程与环境创新紧密结合、协调发展,就是充分开发了防洪工程中可利用的各种资源,全方位、多渠道的发掘了防洪工程建设的多项功能,不仅打造了新型堤防,也是实现传统水利向现代水利、可持续发展水利转变有益而成功的尝试。三、促进城市防洪工程与滨江环境协调发展,必须正确处理好几个方面的关系1.正确处理防洪保安与环境改造的关系城市防洪工程建设的根本点是为了防洪保安,因此,在处理防洪保安与环境改造的关系时,必须在确保防洪安全的基础上实施环境改造。在对环境改造进行规划设计时,必须充分考虑防洪保安的先决条件,服从防洪保安的要求,切不可本末倒置。同时,环境改造也是对防洪工程在功能上的延伸和补充,环境改造提升了城市品位和投资环境,产生了巨大的经济效益和社会效益。正确处理好两者关系,就能使两者相得益彰,在确保城市安全的同时,达到人与自然的和谐统一。2.正确处理规划建设与工程效益的关系城市防洪工程是一项投资巨大的综合性系统工程,是一项功在当代,利在千秋的大工程。因此,在进行规划建设时,必须高起点规划,高标准设计,高质量建设,充分考虑工程建成后发挥的防洪效益,环境效益和社会效益,必须服从长江流域总体规划。在规划时,与城市总体规划相协调,顺应城市化发展趋势,必须统筹兼顾,全方位考虑各项工程效益的发挥,既要有创新的思想,更要坚持科学技术的支撑。在建设时,时刻牢记百年大计,质量第一的思想,确保工程质量。好的规划建设是发挥工程效益的先决条件,工程效益的充分发挥又是规划建设的目标和要求,两者有机结合,就能充分发挥防洪工程的多方位功能,促进城市环境创新。3.正确处理堤防建设与维护管养的关系一笔丰厚的优良资产形成后,如何使其效益最大化并永续利用,必须要有适应新形势的管理体制予以保障。堤防设施的维护管养至关重要。堤防建设发挥的防洪效益,环境效益都必须靠维护保养来持久发挥作用,这是防洪安全的需要,也是环境创新战略的需要。要科学运用市场经济的机制,探索和建立新的堤防设施管养体制,强化职能,科学管理,才能实现堤防设施持久地发挥效益。武汉市作为长江中游的滨江大城市,将努力抓住新《水法》颁布的机遇,在长江流域综合发展规划的指导下,着力推进城市防洪建设与城市环境创新协调发展,为建设具有滨江滨湖特色的现代化城市不懈奋斗。黄河已经是一条被人类深刻影响和干扰的河流,未来应如何治理,才能既保障区域经济社会的可持续发展,又能保障这条古老而又伟大的河流生生不息,造福于人民,是一个值得深思而又亟待解决的重大课题,也是制定国家中长期科技发展规划的重要内容。未来黄河治理的核心难题有三个:一是黄河的巨量泥沙如何处理和利用,这是黄河难治的症结,它不仅关系到黄河的防洪安全,也关系到水土流失的治理和水资源的开发利用。二是依据黄河水资源的变化,如何合理配置、有效解决国民经济和社会可持续发展,以及维持河流生命对水资源的需求。三是如何保护和改善黄河的生态环境。解决这三个问题的关键是:合理配置,高效利用,有效保护,增水减沙。为此,需要重点研究和解决以下问题:一、变化环境下的黄河流域产水产沙情势分析1.黄河兰州以上地区径流变异原因分析黄河兰州以上是流域水资源的主要来源区,多年平均(1950~2001年)天然径流量332亿m3。1986年以来仅为295亿m3,比1985年以前的年均值减少15.5%,而同期降雨仅减少2.9%,其中1997年以来减少22.2%,而同期降雨反而增加了4.5%,变化原因不清。 2.黄河中游典型支流地下水开发和雨水截流等对地表径流的影响黄河中游的渭河和汾河,近五六年降雨减少14%,但实测径流量却减少了40%~50%;伊洛河和沁河近10年降雨比五六十年代减少11%~15%,但实测径流却减少了60%~70%。这些重点产水支流的径流量减少,势必影响全河水资源的供需形势。通过对典型支流地表水—地下水—降雨的循环过程研究,摸清地下水开发和雨水截流对地表径流的影响。3.水保措施对入黄径流泥沙的影响和发展趋势通过对植被的耗水规律、耗水量和沟道坝系工程的蓄水拦沙能力的研究,提出黄土高原水土保持和自然修复等措施的基本耗水量、减蚀拦沙能力和发展趋势。4.水利工程对黄河下游洪水的调节程度和发展趋势重点研究下游洪水来源区大中型水利工程对洪水量级和过程的调节程度,预测汛期水量的可能变化,包括普通洪水、大洪水和特大洪水的变化趋势。5.气候变化对黄河中游径流量的影响以上5个专题研究内容基本概括了影响黄河水沙变化的基本因素,地域上覆盖了黄河产流产沙区的90%,将回答因人类活动和气候变化对未来黄河产流产沙的影响及其变化趋势。关键词:黄河治理,科技发展规划,水沙调控二、维持黄河河流生命需水量的研究1.维持黄河健康状况的评价指标和方法的研究提出河流各项基本功能(排洪输沙、水质、生态、供水)的概念,基本因子,维持河流健康状况的评价指标和方法。2.维持黄河下游河槽基本排洪输沙功能的水沙过程研究洪水期流量具有塑造河槽形态和冲刷河道的重要作用,研究未来黄河汛期水沙条件变化情况下,下游河道的冲淤演变规律,提高河道排洪输沙功能的水沙过程,利用水利枢纽工程调控洪水和泥沙的可能性,技术措施和代价。3.黄河河口适度规模湿地淡水需水量研究研究河口湿地典型生物群落发育和更替的时空需水过程与强度,计算不同湿地规模和生态容载量下的需水量,提出维持河口适度规模湿地及其生物多样性保护所需的低限淡水量和季节分布。4.维持黄河河口近海生态平衡的最小需水量研究重点研究黄河淡水补给与近海区域生态平衡的关系,提出有利于近海生态保护和恢复的黄河最小入海水量和季节分布。5.不同功能需水量的迭代耦合关系研究根据维持河流各项基本功能的需水量和时空分布,进行迭代耦合,提出不同河段在不同时段能基本满足河流功能的需水量和过程。三、保障黄河河道生命的水沙调控关键技术研究1.提高黄河水资源承载能力的途径和技术研究挖潜:节水治污、洪水资源化、污水资源化、合理水价、统一调度,经济结构调整等。调水:西线南水北调增加黄河供水量,中、东线南水北调置换黄河下游引黄用水和相机向黄河下游补水的可行性研究;引江济渭等的可行性研究。根据不同水平年国民经济和社会发展需水量预测、黄河水资源的承载能力和维持黄河河道生命的需水量及过程,采用水资源多维临界调控技术,进行多方案论证、比选,提出科学的对策措施,供决策参考。2.处理和利用黄河泥沙的途径和技术研究根据未来黄河水沙条件的变化,进一步研究泥沙运动机理,水库及河道泥沙冲淤演变趋势,考虑河道整治、滩区和河口治理措施、干流梯级控制性工程的开发、中游大规模生态环境的建设以及南水北调工程建设等的影响,充分发挥好“拦、排、放、调、挖”等处理和利用泥沙的作用,并研究谋求黄河河床不抬高,长治久安的治沙思路和其他重大措施的可行性。3.小浪底水库水沙调控运用关键技术研究主要包括:水库异重流排沙、大水相机降水冲刷、逐步抬高水位拦粗排细、调水调沙、防洪调度等运用方式的关键技术研究,充分发挥小浪底水库以防洪减淤为主的综合利用效益。4.有效遏制黄土高原水土流失的关键技术及其减沙效果研究实行退耕还林(草)休牧,利用自然力量恢复植被。沟道坝系治理,以多沙粗沙区为重点,研究沟道坝系的合理布局和相对平衡的关系,拦沙效益,评价指标和筑坝技术,坝地可持续利用技术�坡耕地综合开发利用技术等。5.南水北调工程增加黄河汛期水量的技术途径研究汛期水量减少是造成下游河槽严重淤积和潼关高程居高不下的主要原因,要研究给这两个河段增加汛期水量,特别是增加汛期中小洪水的量级和频次的可行性和措施。6.黄河水沙演进数学模拟技术开发黄河中下游河道二维水沙演进数学模型和水库水沙演进数学模型,用以研究黄河水沙运动规律、预测变化趋势,优选黄河水沙调控技术。
311 评论(10)

Kara101

水资源短缺风险综合评价 摘要 本文首先对北京市的 2001-2009年得水资源短缺状况进行了调查,在综合考虑系统属性等风险过程后,利用层次分析模型对北京市各缺水影响因子的权重进行了定量分析,并基于致险因子承险因子及损害程度等影响因子构建了水资源系统风险的评价指标及模型:该指标体系由 4 层次共 20 个指标构成,能更好的表征风险的产生和构成;该模型包括参数计算与风险分级,能简便计算风险级别的划分。其次,本文在综合考虑水资源呈现能力后得出结论,北京市能应对水资源系统风险,但是仍受约束性风险限制,可通过开源节流,调整产业结构及规划水资源管理来应付然后我们对北京市 2001-2009年水资源总量,地表水资源以及地下水资源量进行了调查。运用 Matlab 处理系统对历年降水量进行了拟合,用 origin 处理系统对万元 GDP 水耗做出了拟合由此得出了缺水量波动性较大的结论。最后本文对所建模型进行了升级及完善,采用灰色模型的建立改进方法,通过对无偏 GM(1,1)模型的求解,得出 2010 年和 2011 年度致险率(RBI)、承险率(RSI)、脆弱性(CI)以及风险(ωDRi)、风险损失(DI)的值,并由此得出结论,北京市未来两年的水资源短缺风险分别为 40%和 50%,正在呈上升趋势,逐年增高,不过基本上还在约束性风险级别内,为此建议管理机构还是要约束水资源使用来防范风险,通过推荐高效水资源系统管理,促进水资源优化配置进程等途径来促进水资源系统恢复,有效地减弱风险发生及潜在损害。 关键词: 层次分析法 水资源短缺风险 多元回归 拟合 无偏 GM(1,1) 2 问题的重述 水资源,是指可供人类直接利用,能够不断更新的天然水体。主要包括陆地上的地表水和地下水。近年来,我国、特别是北方地区水资源短缺问题日趋严重,水资源成为焦点话题。水资源系统风险是由于天然来水的波动、地下水持续保障能力不足、供水条件落后以及水资源社会经济承载负担过重等因素综合作用的结果, 对社会、经济、环境存在潜在损害。目前北京是世界上水资源严重缺乏的大都市之一,其人均水资源占有量不足 300m3,为全国人均的 1/8,世界人均的 1/30,属重度缺水地区,北京市水资源短缺已经成为影响和制约首都社会和经济发展的主要因素。政府采取了一系列措施, 如南水北调工程建设, 建立污水处理厂,产业结构调整等。但是,气候变化和经济社会不断发展,水资源短缺风险始终存在。如何对水资源风险的主要因子进行识别,对风险造成的危害等级进行划分,对不同风险因子采取相应的有效措施规避风险或减少其造成的危害,这对社会经济的稳定、可持续发展战略的实施具有重要的意义。 根据《北京 2009 统计年鉴》及市政统计资料提供了北京市水资源的有关信息。利用这些资料和我们自己获得的其他资料,讨论得知北京市水资源短缺现在主要的主要原因是水资源供应小于水资源需求的矛盾,而如果想要解决这个问题,就必须要从影响因子来着手,所以问题细分为: 北京市水资源短缺的主要因子是什么? 各因子对于风险程度的贡献是多少? 北京市已经到什么样的风险程度了? 针对于主要因子我们怎样应对才能降低风险,从而做到有效调控? 北京是未来几年又将面临什么程度的水资源短缺风险,又该如何应对呢? 最后,通过建模等一系列过程进行分析检验并得出结论,且向北京市主管部门写一份建议报告。 问题的分析 北京水资源人均占有量在世界各国首都中排名百位之后。自上世纪七十年代以来,随着人口的大量增加和经济的发展,缺水成为北京面临的严重问题之一,近几年每年缺水均在 4 亿立方米左右。地下水资源开采量逐年剧增,尽管目前对地下水开采进行了限制,地下水位有所上升,但仍处于超采状态。地下水的超采会形成漏斗区,到目前为止,已经形成以朝阳区为中心,西到石景山、东至顺义、南至南苑、北到昌平约 1600 平方公里的漏斗区,引起地面沉降。由于水位不断下降,致使井越打越深,形成恶性循环。为应对这种情况,多年来,北京通过各种方式保证供水安全,除了通过调整产业结构加大节水力度,多次提高水价,强力推行农业、工业和城市节水,关、停、转移高耗水企业外,还独创了地表水、地下水、再生水、过境水、雨洪水和外调水的六水联调模式,对水资源进行合理调配,以此提高城市的供水能力。尽管方法尽施,可是但是究竟是什么导致了北京市的如此现状呢,有没有什么原因呢,该怎样解决呢,经过本小组成员的查找资料和激烈的讨论,我们认为从水资源系统结构来看, 风险来源于系统属性和过程对潜在危害的抵抗乏力。系统本身的输入主体短缺、过程波动及输出脆弱程度是导致系统风险产生的重要原因, 他们是水资源系统风险的致险因子; 水资源系统对致险因子进行反馈, 引导系统对潜在风险进行抵抗从而削减风险产生及危害, 我们将这一种反 3 馈及抵抗性质称为承险能力; 系统在致险与承险因子相互作用下, 当致险压力大于承险能力时, 风险就产生了。所以风险因子分为致险因子和承险因子,然后致险因子和承险因子又会细分为很多条。不同的因子给风险所能带来的贡献的大小是不一样的,这个可以通过建模的方式利用 Excel 或者 Matlab,origin 软件进行运算得出,之后通过制定一个风险等级将北京市的现状表现出来,并对作出巨大贡献的因子进行合理的调控。至于北京市水资源短缺未来两年的预测,我们可以用回归的思想,再用灰色理论进一步改进,即可对北京市进行预测了。 模型的假设与符号说明 假设 1:收集的北京市水资源各个数据都实际数值相差不大; 假设 2:各个影响因素不会因突发事件发生突变; 假设 3:建模收集数据真实可靠; 假设 4:建模中涉及主观分析的结论基本与事实相符; aij ——1—9 标度理论得出的第i 项较第 j 项的相对重要值 μij ——测度判断值 ωD ——准则层 D 下的相对权向量 CI —— 脆弱性 ωSi ——系统风险的发生及传递对系统损害率在相关评价指标体系上的指标权重 的重分配值 Pi——风险潜在发生概率 Ri——系统风险因子的指标值 DI——风险损失 RBI ——致险率 RSI——承险率 ωDRi——风险 b——回归系数; bint——回归系数的区间估计; r——残差; rint ——置信区间; stats——用于检验回归模型的统计量,有三个数值:相关系数r2、F值、与F对 应的概率 p。其中相关系数r2 越接近 1,说明回归方程越显著; F > F1-α(k,n-k-1)时拒绝 H0,F 越大,说明回归方程越显著;与 F对应的概率 p α < 时拒绝H0,回归模型成立。 α ——显著性水平,一般为 05或 01,本论文中为 模型建立与求解 1 针对于问题 1: 我们对北京市全年水资源总量与全年供水(用水)总量进行了调查和比较如表 1 所示。 4 表1[7]-[9] 2001 2002 2003 2004 2005 2006 2007 2008 2009全年水资源总量 2 1 4 4 2 5 8 2 8全年供水(用水)总量 9 6 8 6 5 3 8 1 5北京市全年水资源总量与全年供水(用水)总量的比较4 2 5 9 6 8 6 5 3 1 02001 2002 2003 2004 2005 2006 2007 2008 2009全年水资源总量全年供水(用水)总量亿立方米 利用 Origin 软件处理的三位直观图如图 1。 图1 5 如图所示北京市全年供水总量均高于水资源总量,由于 2008 年北京市举办奥运会,为了保证北京市水资源能够及时供应,所以产生了供水量与水资源总量相差不大的局面。其余年份数据反映北京市各年均呈缺水事态。 我们通过具体的系统属性,系统潜在损害指标来对系统表征层进行表征。通过对水文水资源循环机理的研究,充分考虑水资源系统风险产生和传递机制,经过层层挑选,从而得到一下 20 个评价指标(如图 2)[1]。 图 2 水资源系统风险评价指标体系图 6 说明: A 代表目标层,即水资源系统风险评价要达到的目标, 即水资源系统风险求算。 B 代表风险属性层,即表征潜在危害排除系统承险能力而产生和传递的过程。风险属性层有短缺性、波动性、脆弱性及承险性。系统承险能力通过水资源系统的承险性来表征 C 代表风险属性系统表征层,即水资源系统面临风险的综合表征层, 但不能明确地表征系统的风险, 因此需要通过系统潜在风险损害可能及损害程度来细化表征。本指标系统将风险属性层通过12个指标来体现。 D 代表评价指标层,即通过具体的系统属性、系统潜在损害指标来对系统表征层进行表征。通过对水文水资源循环机理的研究, 充分考虑水资源系统风险产生和传递机制, 经过层层挑选, 从而得到以下20个评价指标。 这些指标不但从水量、水质方面对水资源系统风险进行了表征, 还兼顾了社会、经济、生态环境的效应, 并综合考虑了人对风险的积极适应以及人的应急性处理等主观能动的作用。 我们认为从水资源系统结构来看, 风险来源于系统属性和过程对潜在危害的抵抗乏力。Kaplans 等从定量角度对风险进行了定义[2],系统本身的输入主体短缺、过程波动及输出脆弱程度是导致系统风险产生的重要原因, 他们是水资源系统风险的致险因子; 水资源系统对致险因子进行反馈, 引导系统对潜在风险进行抵抗从而削减风险产生及危害, 我们将这一种反馈及抵抗性质称为承险能力; 系统在致险与承险因子相互作用下, 当致险压力大于承险能力时, 风险就产生了。水资源系统风险的要素还包括损害程度, 致险压力、承险能力及损害程度,综合作用下的风险过程, 如图 3 所示[1]。 图3 水资源系统风险过程及属性表征 7 系统风险因子(如图2所示)可归结为致险因子和承险因子, 前者是指引起系统变化的因子, 包括系统结构的变化和外界干扰, 致使风险发生的概率为致险率; 而后者是指系统充分反馈或在历史事故后自我调节、自我适应而达到的能够应对危害的要素, 系统对风险削减能力为承险率。下面对致险因子以及承险因子进行展开讨论。 水资源系统致险因子: ① 短缺性: 指水资源系统在自身运行过程中输入主体容易受到损害的性质, 表征系统输入主体抵抗风险的不完备性。短缺性体现在系统运行的供需不满足性以及系统已经受到损害的程度。具体来看, 水资源系统的短缺性体现在使用短缺性、蓄水短缺性和环境短缺性三个方面, 即水资源缺水率、地下水超采和水体污染造成损害性。 ② 波动性: 相对于水资源系统多年正常运作的稳定程度, 波动性是指水资源系统因为系统波动或要素波动造成的系统不平衡运作的性质。系统波动性来源于系统多年的不平衡性和系统输入输出的变动性。波动可以用平均状态和极值差异来表征, 同时系统输入输出的稳定性也非常重要, 因此, 水资源系统波动性由多年波动、极值波动和水源波动来表征。 ③ 脆弱性: 表征系统面临风险的潜在损害度, 即系统潜在输出抵抗风险的脆弱程度。 脆弱性指标能够衡量因风险产生而引起的损害程度, 体现在水资源- 社会经济耦合系统中, 主要是引起社会、经济、生态应对风险能力的下降。社会损失体现在人均潜在利用能力的损失, 经济损失表征对生产活动造成的损害, 而生态损害体现在生态环境的破坏上。 水资源系统承险因子: 水资源系统本身是一个动态的开放系统, 能通过自身的反馈调节来应对风险, 系统本身形成了一套承担风险发生和阻止风险破坏的承险因子体系。水资源系统本身的资源禀赋、系统内部对风险事件形成的适应性以及风险发生时通过人为调度的应急性, 都是系统应对风险的有力保障, 是水资源系统承险因子。资源禀赋体现在水资源系统本身具有的资源条件, 如水资源保障度、水资源再生条件等; 适应性指人类在长时期的生产活动中形成的应对风险的措施、方法手段等, 包括节水措施及节水意识的形成, 以及水资源优化管理及效率提高等方面的尝试; 而应急性是人类形成的专门应对风险发生的应急管理调度措施的能力[1]。 综上所述,我们判定北京市水资源短缺风险的主要风险因子包含致险因子和承险因子, 水资源系统的致险因子体现在使用,蓄水和环境三个方面, 即水资源缺水率、地下水超采和水体污染造成损害性。承险因子体现在系统本身的资源禀赋、系统内部对风险事件形成的适应性以及风险发生时通过人为调度的应急性。 2 针对于问题二: 我们认为,为了区分缺水的主要影响因素,且有针对性地对北京市进行规划和治理,我们采用层次分析模型进行了定量分析。 层次分析法(Analytic Hierarchy Process,AHP)是一种定量与定性相结合的决策方法。层次分析模型(Analytic HierarchiealModel,AHM)是AHP的简化和改进。相对来说,AHP对一致性的要求较高些。AHM的核心环节是将AHP方法中的比例标度判断矩阵(aij)n*n转换为测度判断矩阵(μij)n*n。转换公式为 : 8 式中:aij是按照1—9标度理论得出的第i项较第j项的相对重要值;一般取β=2。AHM法确定权重的主要步骤如下: ① 根据 1~9 标度理论构造两两比较矩阵,即判断矩阵A=(μij)n*n ② 根据转换公式,构造 AHM的测度判断矩阵,并逐行检验一致性。 ③ 属性AHM 复制法:对于n个指标 Dj(j=1,2,…n),比较其相对重要性并确定每个指标权重,可通过构造相对属性测度判断矩阵来实现。令μij 表示第 i 个指标相对于第 j 个指标的重要性;μji 表示第 j 个指标相对于第 i 个指标的重要性 μii表示第 i 个指标自身的比较。按属性数学的要求,规定:μii=0,μij+μji=构造如下AHM 模型。其中间的 n*n 个元素μij 构成相对属性测度评判矩阵(μij)n*n。 ④ 将测度判断矩阵的每一列正规化: ⑤ 求出判断矩阵的每一行各元素之和: ⑥ 对应向量的正规化: 则ωi即为该层次各因素对上一层某要素的相对权重。在具体应用时,在某准则D下元素间的相对权向量表示为: D ω =( 1fω , 2fω ,…, fn ω ) 其中[1]: 9 风险的传递遵循系统科学的传递原则[3]:并联系统的传递函数为两个子系统传递函数之和, 即 ωs= ωs1 ﹢ωs2 式中ωs1,ωs2分别为子系统1,2。 我们结合风险函数即上式,依据评价指标体系本文将建立基于系统属性及传递的致险率(RBI)、承险率(RSI)、脆弱性(CI)及风险损害(DI)的水资源系统风险评价参数。 Tobin和Montz提出利用风险概率(Pi)与系统脆弱性的乘积来度量风险, 本文模型构建中发现这一风险结果是对风险损害的重要体现, 由此沿用这一方法, 通过构建综合风险损害参数DI表示风险, 如下式所示: 通过指标体系, 将体现系统面临致险因子和承险因子对系统作用程度的致险率(RBI ) 及承险率(RSI)分别计算如下: 141Di iiRBI R ω==∑  2015Di iiRSI R ω==∑  经计算得出系统风险因子的指标值Ri (见表2),系统风险因子对于系统的贡献大小,即对系统风险权重ωD(见表3)。 表2 2001—2009北京市水资源系统风险指标值(Ri) 指标 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10Ri 0000 3500 1175 0000 4929 0000 1917 6923 7300 4857指标 D11 D12 D13 D14 D15 D16 D17 D18 D19 D20Ri 1039 0493 7586 4020 6684 2131 1086 8700 2354 3000 水资源系统风险评价指标体系中, 水资源系统脆弱性因子既代表对引起风险发生的致险因子, 又反映了水资源系统损害程度, 由此, 在表征损害程度属性时, 需要构建区别于致险率表征的损害性表征参数, 即脆弱性(CI), 指标权重(ωS)区别于致险承险体系的指标权重 ωD。 10 149Si iiCI R ω==∑  式中: ωSi 表示系统风险的发生及传递对系统损害率在相关评价指标体系上的指标权重的重分配值(见表3的ωS)。 表3 北京市水资源系统风险评价指标权值 指标 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10ωD 2440 6609 1567 0267 0457 0770 0164 0710 0468 0300ωS 2606 0963指标 D11 D12 D13 D14 D15 D16 D17 D18 D19 D20ωD 1090 1690 0130 0890 3880 1935 2576 0515 0910 0191ωS 2541 0958 0715 2214 在对风险的计算中, 采用风险潜在发生概率(Pi)与脆弱性(CI)的乘积的算数平方根ωDRi(风险指数)来表征风险[1]: 000DiDI DIRDIω > = ≤   结合北京市水资源系统状况, 得到北京市水资源系统风险评价指标的2001- 2009年指标值, 从而利用上式,借助Excel软件得到北京市水资源系统的致险率(RBI )、承险率(RSI)、脆弱性(CI)、风险(ωDRi)、风险损失(DI )分别为63% 、05%、46% 、3%、46% 。 参考美国军用标准(MIL-STD-882)[4]中提供的定性分析方法,根据本文风险定义及风险属性,充分考虑系统的致险因子与承险能力的相互关系,将水资源系统风险划分为5级,表征不同的风险级别,见表
140 评论(13)

相关问答