sandy2011
数据建模是很多快速开发平台中会有的概念,它主要指的是在物理数据库之上构建一层逻辑的、面向业务的“ 虚拟数据库”,在接下来的开发过程中全部引用虚拟数据库里的元素即可。 
大数据分析是指对规模巨大的数据进行分析。大数据可以概括为4个V, 数据量大(Volume)、速度快(Velocity)、类型多(Variety)、价值(Value)。以下是大数据具备的多重优势,其中包括:•更好的决策:在NewVantage Partners公司调查中,2%的受访者表示更好的决策是他们大数据分析工作的首要目标。此外,1%的受访者表示已开始朝着这一目标努力,0%的受访者表示取得了一些可衡量的成功,其总体成功率为0%。大数据分析可以为业务决策者提供他们所需的数据驱动的洞察力,以帮助企业开展竞争和业务发展。•提高生产力:来自供应商Syncsort公司的另一项调查发现,9%的受访者使用Hadoop和Spark等大数据工具来提高业务的工作效率。现代大数据工具使分析师能够更快地分析更多数据,从而提高个人生产力。此外,从这些分析中获得的见解通常使组织能够在整个公司内更广泛地提高生产力。•降低成本:Syncsort公司和NewVantage公司的调查均发现大数据分析正在帮助企业降低成本。近五分之三(4%)的受访者表示Syncsort公司的大数据工具帮助他们提高了运营效率,并降低了成本,NewVantage公司的调查中,约三分之二(7%)的受访者表示他们已开始使用大数据来降低成本。然而有趣的是,只有0%的受访者选择降低成本作为大数据分析的主要目标,这表明对于许多人而言,这只是一个非常受欢迎的附带好处。•改善客户服务:在NewVantage公司调查的受访者中,改善客户服务是大数据分析项目的第二个最常见的主要目标,4%的受访者表示在这方面取得了一些成功。社交媒体、客户关系管理(CRM)系统、其他客户为当今的企业提供了大量有关其客户的信息,他们很自然地会使用这些数据来更好地为这些客户提供服务。•欺诈检测:大数据分析的另一个常见用途用于欺诈检测,特别是在金融服务行业。依赖于机器学习的大数据分析系统的一大优势是它们在检测模式和异常方面非常出色。这些能力可以让银行和信用卡公司能够发现被盗信用卡或欺诈性购买,并且通常是在持卡人知道出现问题之前发现问题。•增加收入:当组织使用大数据来改善决策并改善客户服务时,增加收入通常是一个自然的结果。在Syncsort公司的调查中,超过一半的受访者(7%)表示他们正在使用大数据工具来增加收入,并根据更好的洞察力加速增长。•提高灵活性:同样,从Syncsort公司的调查报告中,7%的受访者表示大数据的好处之一是能够提高业务/IT敏捷性。许多组织正在使用其大数据来更好地调整其IT和业务工作,并且他们正在使用他们的分析来支持更快、更频繁地更改其业务战略和策略。•更好的创新:创新是大数据的另一个共同利益,NewVantage公司的调查发现,6%的高管正在投资分析,主要是作为创新和颠覆市场的手段。他们认为,如果他们能够收集竞争对手所没有的见解,他们就可以通过新产品和服务领先于其他企业。•更快的上市速度:在这些方面,很多企业表示将使用大数据来加快产品上市速度。只有8%的受访者表示这是大数据的首要目标,但6%受访者已经开始朝着这个目标努力,其中1%的受访者表示取得了一些成功。大数据的这种优势也可能带来额外的好处,例如更快的增长和更高的收入。大数据的缺点另一方面,许多企业在实施大数据分析计划时也报告了一些重大挑战。大数据缺点其中包括:•对人才的需求:数据科学家和大数据专家是IT领域最受欢迎的高薪工作者。AtScale公司的调查发现,缺乏大数据技能是过去三年来企业采用大数据面临的头号挑战。在Syncsort公司的调查中,受访者将技能和员工列为创建数据湖时的第二大挑战。雇用或培训员工可能会大大增加成本,获取大数据技能的过程需要相当长的时间。•数据质量:在Syncsort公司的调查中,处理大数据的首要缺点是需要解决数据质量问题。在他们将大数据用于分析工作之前,数据科学家和分析师需要确保他们使用的信息准确和相关,并且采用适当的格式进行分析。这大大减缓了报告流程,但如果企业不解决数据质量问题,他们可能会发现他们的分析所产生的洞察力毫无价值,甚至在采取行动时是有害的。需要进行文化变革:许多利用大数据分析的组织不仅希望在报告方面做得更好,还希望使用分析在企业内部创建数据驱动的文化。事实上,在NewVantage公司的调查中,6%的高管表示他们的公司正在创建这种新型企业文化。然而,改变文化是一项艰巨的任务。到目前为止,只有4%的受访者表示在这方面取得了成功。•合规性:大型分析工作的另一个棘手问题是遵守政府法规。企业的大数据分析中包含的大部分信息都是敏感的或个人的信息,这意味着企业在处理和存储数据时可能需要确保它们符合行业标准或政府要求。在Syncsort公司的调查中,数据治理(包括合规性)是处理大数据的第三大障碍。事实上,当受访者被要求按照从1(最重要)到5(最不重要)的等级对大数据挑战进行排序时,大数据在合规性的缺点显然是最重要等级。•网络安全风险:存储大数据(特别是敏感数据),可以使企业成为网络攻击者更具吸引力的目标。在AtScale公司的调查中,受访者一直将安全性列为大数据的主要挑战之一,而在NewVantage公司的调查报告中,高管将网络安全漏洞列为企业所面临的最大数据威胁。•快速变化:大数据分析的另一个潜在缺点是技术正在迅速变化。组织可能面临着非常多变的情况,他们将投资于特定的技术,只是为了在几个月之后获得更好的结果。Syncsort公司的受访者将快速变化列为他们面临的潜在挑战中的第四位。•硬件需求:组织面临的另一个重要问题是支持大数据分析计划所需的IT基础设施。用于存储数据的存储空间,用于将数据传输到分析系统或从分析系统传输的网络带宽,以及用于执行这些分析的计算资源在购买和维护方面都是十分昂贵的。一些组织可以通过使用基于云计算的分析来解决此问题,但这通常不会完全消除基础设施问题。•成本:当今许多大数据工具都依赖于开源技术,这大大降低了软件成本,但企业仍然面临与人员配备、硬件、维护和相关服务相关的大量开支。大数据分析计划在预算范围内大幅度运行并且比IT经理最初预期的部署时间更长,这种情况并不少见。•难以集成遗留系统:大多数经营多年的企业已经在各种环境中的各种不同应用程序和系统中分析和存储了数据。集成所有这些不同的数据源,并将数据移动到需要的位置也会增加处理大数据的时间和费用。
传统的基本数据模型有以下三种:1、层次模型层次模型是一种树结构模型,它把数据按自然的层次关系组织起来,以反映数据之间的隶属关系。层次模型是数据库技术中发展最早、技术上比较成熟的一种数据模型。它的特点是地理数据组织成有向有序的树结构,也叫树形结构。结构中的结点代表数据记录,连线描述位于不同结点数据间的从属关系(一对多的关系)。2、网状数据模型网状模型将数据组织成有向图结构,图中的结点代表数据记录,连线描述不同结点数据间的联系。这种数据模型的基本特征是,结点数据之间没有明确的从属关系,一个结点可与其它多个结点建立联系,即结点之间的联系是任意的,任何两个结点之间都能发生联系,可表示多对多的关系。3、关系数据模型由于关系数据库结构简单,操作方便,有坚实的理论基础,所以发展很快,80年代以后推出的数据库管理系统几乎都是关系型的。涉及到的基础知识有:关系模型的逻辑数据结构,表的操作符,表的完整性规则和视图、范式概念。关系模型可以简单、灵活地表示各种实体及其关系,其数据描述具有较强的一致性和独立性。在关系数据库系统中,对数据的操作是通过关系代数实现的,具有严格的数学基础。
数据模型(Data Model)是数据特征的抽象,是数据库管理的教学形式框架。数据库系统中用以提供信息表示和操作手段的形式构架。数据模型包括数据库数据的结构部分、数据库数据的操作部分和数据库数据的约束条件。1)数据结构:数据模型中的数据结构主要描述数据的类型、内容、性质以及数据间的联系等。数据结构是数据模型的基础,数据操作和约束都建立在数据结构上。不同的数据结构具有不同的操作和约束。 2)数据操作:数据模型中数据操作主要描述在相应的数据结构上的操作类型和操作方式。 3)数据约束:数据模型中的数据约束主要描述数据结构内数据间的语法、词义联系、他们之间的制约和依存关系,以及数据动态变化的规则,以保证数据的正确、有效和相容。优点: 存取方便且速度快 结构清晰,容易理解 数据修改和数据库扩展容易实现 检索关键属性十分方便 缺陷: 结构呆板,缺乏灵活性 同一属性数据要存储多次,数据冗余大(如公共边) 不适合于拓扑空间数据的组织 网状模型用连接指令或指针来确定数据间的显式连接关系,是具有多对多类型的数据组织方式 优点: 能明确而方便地表示数据间的复杂关系 数据冗余小 缺陷: 网状结构的复杂,增加了用户查询和定位的困难。 需要存储数据间联系的指针,使得数据量增大 数据的修改不方便(指针必须修改) 关系数据库模型是以记录组或数据表的形式组织数据,以便于利用各种地理实体与属性之间的关系进行存储和变换,不分层也无指针,是建立空间数据和属性数据之间关系的一种非常有效的数据组织方法 优点: 结构特别灵活,满足所有布尔逻辑运算和数学运算规则形成的查询要求 能搜索、组合和比较不同类型的数据 增加和删除数据非常方便 缺陷: 数据库大时,查找满足特定关系的数据费时 对空间关系无法满足
大数据分析是指对规模巨大的数据进行分析。大数据可以概括为5个V,数据量大(Volume)、速度快(Velocity)、类型多(Variety)、价值(Value)、真实性(Veracity)。大数据的优缺点具体如下:大数据优点有:(1)及时解析故障、问题和缺陷的根源。(2)为成千上万的快递车辆规划实时交通路线,躲避拥堵。(3)分析所有SKU,以利润最大化为目标来定价和清理库存。 (4)根据客户的购买习惯,为其推送他可能感兴趣的优惠信息。(5)从大量客户中快速识别出金牌客户。 (6)使用点击流分析和数据挖掘来规避欺诈行为。大数据的缺点主要就是信息透明化,还有就是现在国内大部分企业的系统架构在应对大量数据时均有扩展性差、资源利用率低、应用部署复杂、运营成本高和高能耗等缺陷。想了解更多有关数据分析的详情,推荐咨询达内教育。达内教育已从事19年IT技术培训,累计培养100万学员,并且独创TTS0教学系统,1v1督学,跟踪式学习,有疑问随时沟通;自主研发的26大课程体系更是紧跟企业需求;课程穿插大厂真实项目讲解,对标企业人才标准,提高学员自身竞争力。感兴趣的话点击此处,免费学习一下