期刊问答网 论文发表 期刊发表 期刊问答
  • 回答数

    3

  • 浏览数

    132

huanghui2500
首页 > 期刊问答网 > 期刊问答 > 科学研究小论文范文初中数学

3个回答 默认排序1
  • 默认排序
  • 按时间排序

tp3450

已采纳
Easy to overlook the answer"Fact is stranger than fiction, we also have many interesting mathematical For example, in the ninth book, I now have a problem in the workbook, education, said: "this is a passenger train to the west, the east from 45 kilometers per hour line, stop, then after 5 hours just what the halfway point of the two cities from 18 km, two things WangXing? How many kilometres from town with the small English in this problem, the calculation method and the results are not the XingSuan king of the number of kilometers than small calculates km less, but the results of the two to This is why? You want to come? You count them two listed in the " Actually, this problem is we can very quickly made a kind of method is: 45 x 5 = 5 (km), 5 + 18 = 5 (km), 5 * 2 = 261 (km), but look close scrutiny, he felt something was Actually, here we overlooked a very important conditions, "this is just what the halfway point of the city from the conditions of 18 kilometers away from" the word ", not to say, or more than halfway If it is not from the middle point to 18 kilometre, column type is the front, if is a kind of more than 18 kilometers halfway, column type should is 45 by 5 = 5 (km), 5-18 = 5 (km), 5 x 2 = 189 (km) So the correct answer is: 45 x 5 = 5 (km), 5 + 18 = 5 (km), 5 * 2 = 261 (km) and 45 x 5 = 5 (km), 5-18 = 5 (km), 5 x 2 = 189 (km) Two answers, WangXing answers with the small English answer is In the daily learning, often have many problems, aim to answer is more in practice or neglected in the exam, we need to carefully examines the topic is, life experience, close scrutiny, correct understanding of Otherwise easily overlooked the mistake, the About "0"0, it is the earliest human contact Our ancestors started only know no and have no is 0, 0, so did? Remember the elementary school teacher once said, "any number of minus itself is equal to 0, 0 means without " That is simply not We all know that the 0 degrees centigrade thermometer said the freezing point of water ( a standard under the pressure of the mixture of water temperature), including 0 is solid and liquid water But in Chinese characters, 0 means that a zero, such as: 1 more pieces), Decimal 2) not certain Thus, we know that the "no amount is 0, but not without number, 0 solid and liquid said the differentiator, ""Any divided by " no significance for This is the primary school teacher still talking to a conclusion about the "0", then the division (primary) is divided into several copies will be a, how much A whole cannot into a "0" no Then I realized the a / 0 0 0 to limit can be expressed in the variable (a variable in the process of changing its absolute than any small forever is positive), shall be equal to a variable in the infinite (changes in its absolute than any big is positive) Get a theorem about 0 "zero limits of variables, called an infinitesimal"

科学研究小论文范文初中数学

123 评论(11)

babydog0

身边的数学--------------------------------------------------------------------------------用天平称物品的学问��我们先来研究一下只许在天平的一边盘上放砝码,要求一次称出物品重量的情况。��例如:在天平的一边盘上放砝码,要把1克到3O克整克重的物品,都能一次性地分别称出来,至少要备置几个什么样的砝码?��要“一次性”称出,又要做到砝码的个数“少”,各个砝码的克数不要相同,能将几个砝码拼凑成要称的重量,就尽量拼凑。��显然,1克、2克的砝码是不可少的。1+2=3(克),3克的砝码可以不要。利用1克、2克的砝码各一个,无论怎么也不能一次称出4克的重量,必须要有一个4克砝码。有了4克的砝码,再配上1克、2克的砝码,就能分别称出5克、6克、7克的重量来。顺着这个思路,我们模拟天平称物的情况,制得下表:放置砝码(克) 称出物品重量(克)1 12 23+1 34 44+1 54+2 64+2+1 78 8…… ……8+4+2+1 1516 16…… ……16+8+4+2 3016+8+4+2+1 31��从表中可以看出,称3O克重量的物品时,用了4个砝码;但要分别称出1克到3O克的整克重量的物品时,需准备的砝码应该是5个,即1克、2克、4克、8克、16克,并且利用这5个砝码的最大称重量是1+2+4+8+16=31(克)。��找一找,l克、2克、4克、8克、16克这5个按从轻到重的顺序排列的砝码之间有什么关系?我们不难发现,相邻的两个砝码的重量,较重的是较轻的2倍。由此可知,只许在天平一边盘上放砝码,并且要求一次性分别称出1克至若干千克整克重的物品,至少需备置的各个砝码的重量,第1个是1克,其余可依次按“2倍法”得出。密铺的学问��地砖的形状往往是正方形的,也有长方形的,我们还见过正六边形的地砖。无论是正方形、长方形、还是正六边形的地砖,都可以将一块地面的中间不留空隙、也不重叠地铺满,也就是密铺。还有什么形状的图形可以密铺地面呢?同学们在思考这一问题时总是借助于画出的图形去实验,通过实际观察而得出结论。��其实用地砖铺地这一生活问题也有数学方面的道理,可以用数学中学到的圆周角是36O度这一知识从理论上分析、解决。��我们都知道,铺地时要把地面铺满,地砖与地砖之间就不能留有空隙。如果用的地砖是正方形,它的每个角都是直角,那么4个正方形拼在一起,在公共顶点处的4个角,正好拼成一个36O度的周角。正六边形的每个角都是120度, 3个正六边形拼在一起时,在公共顶点上的3个角度数的和正好也是36O度。除了正方形、长方形以外,正三角形也能把地面密铺。因为正三角形的每个内角都是6O度,6个正三角形拼在一起时,在公共顶点处的6个角的度数和正好是36O度。��正因为正方形、正六边形拼合以后,在公共顶点上几个角度数的和正好是36O度,这就保证了能把地面密铺,而且还比较美观。��还有什么形状的图形可以密铺地面呢?你现在会从数学的角度回答这个问题吗?试试看?
256 评论(8)

新兴墨汐

我也正好在做这个作业,不过为什么不能超出初一生的思想和知识??????
117 评论(9)

相关问答