期刊问答网 论文发表 期刊发表 期刊问答
  • 回答数

    5

  • 浏览数

    211

惟一
首页 > 期刊问答网 > 期刊问答 > 初中数学分类讨论论文

5个回答 默认排序1
  • 默认排序
  • 按时间排序

rkvrm52

已采纳
“写什么?怎样写?”这是每个学写小论文的同学都会碰到的问题。一篇好论文的产生,对于它的作者来说是一次创造性的劳动。创造性的劳动对劳动者的要求是很高的。其创作的素材、水平,乃至创作的灵感……,绝不是轻易可以得到的,它们需要作者在自己的学习与生活实践中,去进行长期的积累与思考。从我校征集的论文来看,作者中有的是在平时十分注意对课本知识进行归纳整理、拓展延伸,学习中有许多意想不到的收获;有的是从课外阅读中得到收获与启发后,获得灵感、得以选题;……更有甚者是,有的作者在生活中发现问题注意观察、探究,并与自己的数学学习相联系,对观察、探究的结果进行思考、归纳、总结,升华为理论,写出了令人叫绝的好论文。综观获奖论文的小作者们,他们大多是数学学习的有心人。好论文的作者不仅要有较好的数学感悟,还要有良好的文学修养、综合素养。

初中数学分类讨论论文

155 评论(11)

lifeo0

经过分析,三角形全等条件如下“SAS”也叫“边角边”,意思是两个三角形中,有两条边和他们的夹角对应相等时,这两个三角形全等;“SSS”也叫“边边边”,意思是两个三角形中,有三条边对应相等时,这两个三角形全等;“ASA”也叫“角边角”,意思是两个三角形中,有两个角和他们的夹边对应相等时,这两个三角形全等;“AAS”也叫“角角边”,意思是两个三角形中,有两个角和其中一个角的对边对应相等时,这两个三角形全等;
291 评论(15)

宏远-rainbow

全等三角形【课题】全等三角形【教学内容】人教版九年义务教育三年制初中《几何》第二册P21全等三角形【教学目的和教学要求】1、会说出怎样的两个图形是全等形,会用符号语言表示两个三角形全等2、知道全等三角形的有关概念,会在全等三角形中正确地找出对应顶点、对应边、对应角3、会说出全等三角形的性质4、通过演绎变换两个重合的三角形,呈现出它们之间的各种不同位置的活动,从中了解并体会图形变换的思想,逐步培养动态研究几何的意识【教学重点和难点】本节重点是三角形的性质,难点是确认全等三角形的对应应元素【教学用具】多媒体计算机或投影片【教学过程】一、教学引入设计: 我们身边经常看到“一模一样”的图形,比如两张由同一底片冲印出来的完全相同的照片,用两张纸重叠在一起剪出的两张窗花等,你还能举一些这样的“一模一样”的例子吗?二、教学设计:问题:几何中,我们把上面所列举的“一模一样”的图形叫做“全等形”,那么我们怎么给“全等形”下一个几何定义呢?是:(1)形状相同的两个图形?(2)大小相等的两个图形?(3)能够完全重合的两个图形?讨论结果:能够完全重合的两个图形叫全等形。教师讲述:(1)全等三角形的有关概念(2)全等三角形的表示方法(注意对应顶点的对应位置要对齐)[演示实验设计](1)将重合的两块全等三角形中的一个沿一边所在的直线移动,观察移动过程中两个三角形有哪几种不同的位置。给出出现的各种不同的组合图形,说出它们的对应顶点、对应边、对应角。(2)将重合的两块全等三角形中的一个以一边所在的直线为轴,翻折180度,观察翻折后两个三角形的位置。给出组合图形,说出它们的对应顶点、对应边、对应角。(3)将重合的两块全等三角形中的一个以某一个顶点为中心旋转0~~180度,观察移动过程中两个三角形有哪几种不同的位置。给出出现的各种不同的组合图形,说出它们的对应顶点、对应边、对应角。[实验小结]1、识别全等三角形的对应边、对应角的关键是正确识别它们的对应顶点2、在上面的实验中,我们对两个全等的三角形用不同的方法变换出许多不几何图形,大家仔细寻找一下,两个全等三角形的位置变化了,它们的对应角和对应边是否也发生了变化?
307 评论(10)

jhqf701

以预览模式查看:初中数学论文:初论数学思想的教学功能内容预览: 中学数学教学过程,实质上是运用各种教学理论进行数学知识教学的过程。在这个过程中,必然要涉及数学思想的问题。因为数学思想是人类思想文化宝库中的瑰宝,是数学的精髓,它对数学教育具有决定性的指导意义。本文对这个概念的意义及在教学中的作用作一探讨。希望能再引起广大数学教育工作者的关注。 一、对中学数学思想的基本认识 “数学思想”作为数学课程论的一个重要概念,我们完全有必要对它的内涵与外延形成较为明确的认识。关于这个概念的内涵,我们认为:数学思想是人们对数学科学研究的本质及规律的理性认识。这种认识的主体是人类历史上过去、现在以及将来有名与无名的数学家;而认识的客体,则包括数学科学的对象及其特性,研究途径与方法的特点,研究成就的精神文化价值及对物质世界的实际作用,内部各种成果或结论之间的互相关联和相互支持的关系等。可见,这些思想是历代与当代数学家研究成果的结晶,它们蕴涵于数学材料之中,有着丰富的内容。 通常认为数学思想包括方程思想、函数思想、数形结合思想、转化思想、分类讨论思想和公理化思想等。这些都是对数学活动经验通过概括而获得的认识成果。既然是认识就会有不同的见解,不同的看法。实际上也确实如此,例如,有人认为中学数学教材可以用集合思想作主线来编写,有人认为以函数思想贯穿中学数学内容更有利于提高数学教学效果,还有人认为中学数学内容应运用数学结构思想来处理等等。尽管看法各异,但笔者认为,……网站介绍∶21世纪秘书网,办的非常成功,极具口碑。全站拥有超过11万篇各类材料百度作证,2万套学习资料和各单位全面系统的示范文章,8个专业秘书QQ群提供人气交流平台点击看查。与一般免费秘书网站相比,我们的文章具有唯一性和不可重复性,非常值得已经成为公务员或文秘工作的朋友们学习和参考。本文来自:21世纪秘书网()网站介绍∶21世纪秘书网,办的非常成功,极具口碑。全站拥有超过11万篇各类材料,8个专业秘书QQ群提供人气交流平台。与一般免费秘书网站相比,我们的文章具有唯一性和不可重复性,非常值得已经成为公务员或文秘工作的朋友们学习和参考。详细出处参考:
345 评论(12)

liyeliye

说起数学思想,其实就是,就某一道题来说,有两种或以上的方法去解,也就是说,从两种或以上的角度去看问题,分析问题。现在就数学中四大思想作一篇论文。(数学四大思想:函数与方程思想、转化与化归思想、分类讨论思想与数形结合思想;)  (一)函数与方程  函数思想,是指用函数的概念和性质去分析问题和解决问题。方程思想,是从问题的数量关系入手,运用数学语言将问题中的条件转化等式或是不等式,然后通过解方程(组)或不等式(组)来使问题获解。有时,还实现函数与方程的互相转化、接轨,达到解决问题的目的。  “宇宙世界,充斥着等式和不等式。”换句话说,哪里有等式,哪里就有方程;哪里有公式,哪里就有方程;不等式问题也与方程是近亲,密切相关。应用方程思想时特别需要重点考虑的大体就是列方程、解方程和研究方程的特性。  函数描述了自然界中数量之间的关系,函数思想通过题目中数量的关系,解决问题。一般地,函数思想是构造函数从而利用函数的性质解题,在解题中,善于挖掘题目中的隐含条件,构造出函数解析式和妙用函数的性质,是应用函数思想的关键。要对所给的问题观察、分析、判断比较深入、充分、全面时,才能发现由此及彼的联系。另外,方程问题、不等式问题和某些代数问题也可以转化为与其相关的函数问题,即用函数思想解答非函数问题。  (二)等量代换  等量代换是把未知解的问题转化到在已有知识范围内可解的问题的一种重要的思想方法。通过不断的转化,把不熟悉、不规范、复杂的问题转化为熟悉、规范甚至模式法、简单的问题。我们要不断培养和训练自觉的转化意识,这有利于强化解决数学问题中的应变能力,提高思维能力和技能、技巧。等量代换要求转化过程中前因后果是充分必要的,才保证转化后的结果仍为原问题的结果。它能给人带来思维的闪光点,找到解决问题的突破口。  “解题就是把要解题转化为已经解过的题”。数学的解题过程,就是从未知向已知、从复杂到简单的化归转换过程。”  等量代换思想方法的特点是具有灵活性和多样性。它可以在数与数、形与形、数与形之间进行转换;它可以在分析和解决实际问题的过程中进行,在普通语言向数学语言的翻译中进行;消元法、换元法、数形结合法、求值求范围问题等等,都体现了等量代换思想,但是由于其多样性和灵活性,我们要合理地设计好转化的途径和方法,避免死搬硬套题型。  在数学操作中实施等量代换时,我们要尽量熟悉、简单、直观、标准,即把我们遇到的问题,通过转化变成我们比较熟悉的问题来处理;或者将较为繁琐、复杂的问题,变成比较简单的问题;或者比较难以解决、比较抽象的问题,转化为比较直观的问题,以便准确把握问题的求解过程,比如数形结合法;或者从非标准型向标准型进行转化。按照这些原则进行数学操作,转化过程省时省力,顺水推舟,经常渗透等量代换思想,可以提高解题的水平和能力。  (三)分类讨论  在解答某些数学问题时,有时会遇到多种情况,需要对各种情况加以分类,并逐类求解,然后综合得解,这就是分类讨论法。  引起分类讨论的原因主要是以下几个方面:  ① 问题所涉及到的数学概念是分类进行定义的。如|a|的定义分a>0、a=0、a<0三种情况。这种分类讨论题型可以称为概念型。  ② 问题中涉及到的数学定理、公式和运算性质、法则有范围或者条件限制,或者是分类给出的。如等比数列的前n项和的公式,分q=1和q≠1两种情况。这种分类讨论题型可以称为性质型。  ③ 解含有参数的题目时,必须根据参数的不同取值范围进行讨论。如解不等式ax>2时分a>0、a=0和a<0三种情况讨论。这称为含参型。  另外,某些不确定的数量、不确定的图形的形状或位置、不确定的结论等,都主要通过分类讨论,保证其全面性,更使之具有确定性。  进行分类讨论时,我们要遵循的原则是:分类的对象是确定的,标准是统一的,不遗漏、不重复。  解答分类讨论问题时,我们的基本方法和步骤是:首先要确定讨论对象以及所讨论对象的全体的范围;其次确定分类标准,正确进行合理分类,即标准统一、不漏不重、分类互斥(没有重复);再对所分类逐步进行讨论,分级进行,获取阶段性结果;最后进行归纳小结,综合得出结论。  (四)数形结合  中学数学的基本知识分三类:一类是纯粹数的知识,如实数、代数式、方程(组)、不等式(组)、函数等;一类是关于纯粹形的知识,如平面几何、立体几何等;一类是关于数形结合的知识,主要体现是解析几何。  数形结合是一个数学思想方法,包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:或者是借助形的生动和直观性来阐明数之间的联系,即以形作为手段,数为目的,比如应用函数的图像来直观地说明函数的性质;或者是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的。  恩格斯曾说过:“数学是研究现实世界的量的关系与空间形式的科学。”数形结合就是根据数学问题的条件和结论之间的内在联系,既分析其代数意义,又揭示其几何直观,使数量关的精确刻划与空间形式的直观形象巧妙、和谐地结合在一起,充分利用这种结合,寻找解题思路,使问题化难为易、化繁为简,从而得到解决。华罗庚先生说过:数缺形时少直观,形少数时难入微,数形结合百般好,隔裂分家万事休。  数形结合的思想,其实质是将抽象的数学语言与直观的图像结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化。在运用数形结合思想分析和解决问题时,要注意三点:第一要彻底明白一些概念和运算的几何意义以及曲线的代数特征;第二是恰当设参、合理用参,建立关系,由数思形,以形想数,做好数形转化;第三是正确确定参数的取值范围。
246 评论(10)

相关问答