wslk123456
高中数学必修2知识点一、直线与方程(1)直线的倾斜角定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度因此,倾斜角的取值范围是0°≤α<180°(2)直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率直线的斜率常用k表示即 斜率反映直线与轴的倾斜程度当 时, ; 当 时, ; 当 时, 不存在②过两点的直线的斜率公式: 注意下面四点:(1)当 时,公式右边无意义,直线的斜率不存在,倾斜角为90°;(2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到(3)直线方程①点斜式: 直线斜率k,且过点 注意:当直线的斜率为0°时,k=0,直线的方程是y=当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=②斜截式: ,直线斜率为k,直线在y轴上的截距为b③两点式: ( )直线两点 , ④截矩式: 其中直线 与 轴交于点 ,与 轴交于点 ,即 与 轴、 轴的截距分别为 ⑤一般式: (A,B不全为0)注意:各式的适用范围 特殊的方程如:平行于x轴的直线: (b为常数); 平行于y轴的直线: (a为常数); (5)直线系方程:即具有某一共同性质的直线(一)平行直线系平行于已知直线 ( 是不全为0的常数)的直线系: (C为常数)(二)垂直直线系垂直于已知直线 ( 是不全为0的常数)的直线系: (C为常数)(三)过定点的直线系(ⅰ)斜率为k的直线系: ,直线过定点 ;(ⅱ)过两条直线 , 的交点的直线系方程为( 为参数),其中直线 不在直线系中(6)两直线平行与垂直当 , 时,; 注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否(7)两条直线的交点相交交点坐标即方程组 的一组解方程组无解 ; 方程组有无数解 与 重合(8)两点间距离公式:设 是平面直角坐标系中的两个点,则 (9)点到直线距离公式:一点 到直线 的距离 (10)两平行直线距离公式在任一直线上任取一点,再转化为点到直线的距离进行求解二、圆的方程1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径2、圆的方程(1)标准方程 ,圆心 ,半径为r;(2)一般方程 当 时,方程表示圆,此时圆心为 ,半径为 当 时,表示一个点; 当 时,方程不表示任何图形(3)求圆方程的方法:一般都采用待定系数法:先设后求确定一个圆需要三个独立条件,若利用圆的标准方程,需求出a,b,r;若利用一般方程,需要求出D,E,F;另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置3、直线与圆的位置关系:直线与圆的位置关系有相离,相切,相交三种情况:(1)设直线 ,圆 ,圆心 到l的距离为 ,则有 ; ; (2)过圆外一点的切线:①k不存在,验证是否成立②k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程【一定两解】(3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)= r2 4、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定设圆 , 两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定当 时两圆外离,此时有公切线四条;当 时两圆外切,连心线过切点,有外公切线两条,内公切线一条;当 时两圆相交,连心线垂直平分公共弦,有两条外公切线;当 时,两圆内切,连心线经过切点,只有一条公切线;当 时,两圆内含; 当 时,为同心圆注意:已知圆上两点,圆心必在中垂线上;已知两圆相切,两圆心与切点共线圆的辅助线一般为连圆心与切线或者连圆心与弦中点三、立体几何初步1、柱、锥、台、球的结构特征(1)棱柱:几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形(2)棱锥几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方(3)棱台: 几何特征:①上下底面是相似的平行多边形 ②侧面是梯形 ③侧棱交于原棱锥的顶点(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直; 
<高中怎样正确使用信息技术>论文我帮助 给撰稿啊~原创的
1.注意与义务教育阶段课程“空间与图形”部分的衔接本章知识内容与义务教育阶段“空间与图形”部分联系密切,许多内容,如空间几何体、三视图、投影等都在义务教育阶段有所接触。从《全日制义务教育数学课程标准(实验稿)》来看,学生对正方体、长方体、圆柱、圆锥、球等份都有了直观认识;会画直棱柱、圆柱、圆锥与球的三视图,会判断简单物体的三视图,能根据展开图描述基本几何体或实物原型;了解直棱柱、圆锥的侧面展开图,能根据展开图判断和制作立体模型;能够求解正方体、长方体、圆柱、圆锥的表面积与体积;能够利用基本几何体与其三视图、展开图之间的关系解决现实生活中的简单问题。本章的教学内容中的空间几何体的结构、三视图、表面积、体积等都与义务教育阶段的学习内容相关,区别在于学习的深度和概括程度上。前面是对具体的棱柱(如正方体、长方体等)进行研究,对圆柱、圆锥和球的认识比较具体。本章对它们的研究更加深入,给出了它们的结构特征。同时,还学习了台体的有关知识,简单组合体涉及柱体、锥体、台体以及球体,比义务教育阶段数学课程“空间与图形”部分呈现的组合体多。另外,本章还要求学生如何在平面上画出空间几何体的直观图、空间几何体的直观图和三视图之间的关系以及通过空间几何体在平行投影和中心投影下的影象使学生认识在平面上可以用多种方法来表示空间几何体。了解本章内容,要求与义务教育阶段数学课程“空间与图形”部分的内容、要求的联系与区别。教学时便可以在学习过的知识基础上,加深一步。2.严谨适度,把握教学要求在《普通高中数学课程标准(实验)》中,立体几何内容的体系结构有重大改革。过去常从研究点、直线和平面开始,再研究由它们组成的几何体,遵循部分到整体的原则;现在先从对空间几何体的整体感受入手,再研究组成空间几何体的点、直线和平面。这种安排有助于培养学生的空间想象能力、几何直观能力,降低立体几何学习入门难的门槛,提高学生学习立体几何学习的兴趣。对于空间几何体的认识,教科书从空间几何体的结构特征、表示方法与度量三个方面展开。由于没有点、直线与平面的有关知识,本章的学习不能建立在严格的逻辑推理的基础上,这与以往教科书有相当大的区别,教师在实际教学中要充分注意到这一点。本章教学重视从实际出发,从具体到抽象,提供丰富的实物模型或计算机软件呈现的几何体,在此基础上引导学生观察、归纳、抽象、概括出它们的结构特征,并能运用这些特征描述现实生活中简单物体的结构;巩固和提高义务教育阶段有关三视图的学习和理解,掌握斜二侧法画平面图形和立体图形的方法和技能,能够使用材料(如纸板)制作立体模型;通过平行投影和中心投影,使学生了解空间图形的不同表示形式;了解空间几何体的表面积和体积的计算公式(不要求记忆公式),能够计算基本几何体及它们的简单组合体的表面积和体积。本章在球的表面积和体积公式的推导过程中利用了极限的思想,但不作为教学要求。有兴趣的同学和学有余力的同学可以了解整个推导过程,了解极限的思想方法在处理这方面问题的作用。总之,教学要求定位在直观感知、操作确认、度量计算的层面。3.重视现代信息技术的应用现代信息技术的广泛应用正在对数学课程的编写、数学教学的实施产生深刻影响。信息技术应用于数学教学,对课堂信息容量的增加、对提高学生学习数学的兴趣、为学生创设一个良好的学习环境等方面都有重要意义。在本章,利用信息技术工具,可以给我们展现丰富多彩的图形世界,帮助学生从中抽象出空间图形。动态演示空间几何体的三视图和直观图,认识立体图形与平面图形的关系,帮助学生建立空间观念,提高空间想象能力和几何直观能力。学好立体几何需要学生能够多动手画一画、做一做。从不同的角度观察空间图形,体会空间几何体在不同的视角下的结构特征。因此,有条件的地方应尽可能使用信息技术,帮助学生更好地学习,达到较好的教学效果。