手机用户
国庆节中的一天,我和爸爸吃完午饭玩24。从开始到结束一直是我赢,爸爸说:“你有什么技巧?”我说: “巧算24点”是一种数学游戏,游戏方式简单易学,能健脑益智,是一项极为有益的活动.巧算24点的游戏内容如下:一副牌中抽去大小王剩下52张,(如果初练也可只用1~10这40张牌)任意抽取4张牌(称牌组),用加、减、乘、除(可加括号)把牌面上的数算成24.每张牌必须用一次且只能用一次,如抽出的牌是3、8、8、9,那么算式为(9—8)×8×3或3×8+(9—8)或(9—8÷8)×3等. “算24点”作为一种扑克牌智力游戏,还应注意计算中的技巧问题.计算时,我们不可能把牌面上的4个数的不同组合形式——去试,更不能瞎碰乱凑.给你介绍几种常用的、便于学习掌握的方法:1.利用3×8=24、4×6=24求解.把牌面上的四个数想办法凑成3和8、4和6,再相乘求解.如3、3、6、10可组成(10—6÷3)×3=24等.又如2、3、3、7可组成(7+3—2)×3=24等.实践证明,这种方法是利用率最大、命中率最高的一种方法. 2.利用0、11的运算特性求解.如3、4、4、8可组成3×8+4—4=24等.又如4、5、J、K可组成11×(5—4)+13=24等. 3.在有解的牌组中,用得最为广泛的是以下六种解法:(我们用a、b、c、d表示牌面上的四个数) ①(a—b)×(c+d) 如(10—4)×(2+2)=24等. ②(a+b)÷c×d 如(10+2)÷2×4=24等. ③(a-b÷c)×d 如(3—2÷2)×12=24等. ④(a+b-c)×d 如(9+5—2)×2=24等. ⑤a×b+c—d 如11×3+l—10=24等. ⑥(a-b)×c+d 如(4—l)×6+6=24等. 游戏时,同学们不妨按照上述方法试一试.需要说明的是:经计算机准确计算,一副牌(52张)中,任意抽取4张可有1820种不同组合,其中有458个牌组算不出24点,如A、A、A、5. 不难看出,“巧算24点”能极大限度地调动眼、脑、手、口、耳多种感官的协调活动,对于培养我们快捷的心算能力和反应能力很有帮助.” 爸爸说“真棒!我送你一个航模。” 看来,生活真离不开数学! 感悟数学 曾听一位奥数老师说过这么一句话:学数学,就犹如鱼与网;会解一道题,就犹如捕捉到了一条鱼,掌握了一种解题方法,就犹如拥有了一张网;所以,“学数学”与“学好数学”的区别就在与你是拥有了一条鱼,还是拥有了一张网。 数学,是一门非常讲究思考的课程,逻辑性很强,所以,总会让人产生错觉。 数学中的几何图形是很有趣的,每一个图形都互相依存,但也各有千秋。例如圆。计算圆的面积的公式是S=∏r²,因为半径不同,所以我们经常会犯一些错。例如,“一个半径为9厘米和一个半径为6厘米的比萨饼等于一个半径为15厘米的比萨饼”,在命题上,这道题目先迷惑大家,让人产生错觉,巧妙地运用了圆的面积公式,让人产生了一个错误的天平。 其实,半径为9厘米和一个半径为6厘米的比萨饼并不等于一个半径为15厘米的比萨饼,因为半径为9厘米和一个半径为6厘米的比萨饼的面积是S=∏r²=9²∏+6²∏=117∏,而半径为15厘米的比萨饼的面积是S=∏r²=15²∏=225∏,所以,半径为9厘米和一个半径为6厘米的比萨饼是不等于一个半径为15厘米的比萨饼的。 数学,就像一座高峰,直插云霄,刚刚开始攀登时,感觉很轻松,但我们爬得越高,山峰就变得越陡,让人感到恐惧,这时候,只有真正喜爱数学的人才会有勇气继续攀登下去,所以,站在数学的高峰上的人,都是发自内心喜欢数学的。 记住,站在峰脚的人是望不到峰顶的。 
结合教学实际 撰写教学论文 提高自身素质撰写中学数学教育教学论文是教师探讨中学数学教学问题,总结教学教研实践经验、获得理论支撑的有效途径,是教师提高自身素质、促进专业发展的必由之路在平时的教育教学研究活动中,如果你对某一类或某一个问题所采用的教育教学方法比原有的教育教学方法有新的改进,甚至是对某一段教材、内容提出新的处理意见,这种意见有改革创新之意,把这些“突破”、“创新”写出来,这就是教育教学论文数学教育教学论文的格式标题:用词要确切、恰当、鲜明、简洁,便于读记、摘录作者姓名和单位:署名一般置于标题下方,同时附有作者工作单位名称和邮政编码摘要:是对论文内容准确概括而不加注释和评论的简短陈述它一般包括课题研究的意义、目的、方法、成果和结论等摘要应具有独立性,简明扼要、引人入胜,一般不超过300字关键词:指论文中的关键词语,通常是从论文的标题、摘要和正文中抽取出来的,是对表述论文主题内容具有实际意义的词汇,一般以3—8个为宜前言:一般包括研究课题的背景和起点、研究方法、过程及成果的价值正文:这是论文的主体和核心,论文的论点、论据和论证都在这里阐述,它体现论文的质量和学术水平的高低正文应做到概念清晰、论点明确、论证严密、论据充分、数据准确、层次分明应具备科学性和严谨性,同时要条理清楚,文字通俗、简明、流畅结束语:它是在理论分析和实验论证的基础上,概述课题的研究成果和价值,对成果的局限性和尚未解决的问题也应交待参考文献:一般指已发表在正式出版物上的文献或公开出版的书籍,是为撰写和编辑论著而引用的有关图书资料作者介绍:作者简历和主要学术著作教育教学论文写作的基本要求1.科学性:所讲知识、方法、道理要正确 ;2.真实性:自己亲身经历和思考过的;3.针对性:切中当前主要问题和迫切问题 ;4.严谨性:有条理,思维缜密,前后呼应;5.创新性:有创新意义,不落俗套一、立足学生,研究学法,逐步提高写作水平在论文写作的初级阶段,应学会从学生的角度出发,开展解题教学的研究工作,重视对一题多解、一题多变、一题多用的研究,注意对学生中典型错误的分析、归纳、提炼,研究对学生学习方法的指导,突出对解题规律的总结,再从这些方面寻找、积累素材,进行论文写作,这样起点低,难度小,有利于写作水平的提高1.从解题研究中寻找题材如何对题目进行多解多变,发挥每一道题目的最大功能,通过一道题去解决一类问题,得到一种方法,提升多种能力,通过这样的研究,自己的教学能力就会很快得到提高,将这些研究的内容整理出来,就是很好题材2.从错解归纳中寻找题材在学生的解题中,发生错误是常见的,也是正常的,造成错误的原因很多,既有知识方面的错误,更有非知识性的错误,所以,我们在教学中不仅要注意知识方面的查漏补缺,正本清源,而且要注意对非知识方面出现的问题进行反思,找出产生问题的根源,杜绝这类问题的再次发生,从而有效地提高学生的解题能力和思维水平对考生解题(特别是中考题)中的常见错误进行罗列、分析、归纳,剖析产生的根源,指出相应的对策,就可以写出许多论文来3.从学法指导中寻找题材许多学生对数学学习感到困难,在解决有关问题时难以找到切入点,只有经过别人点破才能使问题迎刃而解.为此,我们要通过对典型问题的评析,结合问题的引申,帮助学生总结学习数学的方法,寓学习方法的传授于问题的研究之中,有效地体现数学教学的育人功能4.从总结规律中寻找题材在平时的教学过程中,我们要注意帮助学生积累解题经验,总结解题规律,这样学生在遇到新的问题时就会由已知条件联想到已有的解题经验以及常用的规律,解题能力就会大大提高,同时也为我们撰写文章提供了很多的素材二、立足教法,强化学习,不断增强研写内功数学教育教学论文的撰写过程,是数学教育教学研究的继续,通常要求上升到理论的高度进行分析和研究因此,我们必须强化学习,关注热点,重视反思,增强内功1.从教改热点中寻找题材2.从教材研读中选择题材课标是新教材编写、课堂教学和中考命题的依据,是教师进行教学设计和论文写作的指导性文件因此,我们一定要加强与新课标之间进行高质量的对话教材是对话的文本,是学生学习活动所凭借的话题与依据,是教师进行教研和论文写作的主要依据——吃透教材,只有吃透教材,才有能力驾驭教材(1)要从宏观上理清教材的编写思路:教材是如何根据不同学生的认知能力和心理发展规律,按照“螺旋上升”方式来编写的,做到高瞻远瞩、放眼全局,不在细枝末节上做文章,真正从整体上把握教材;(2)要从微观上推敲教材的细节:思考教材中编写了什么?知识点有哪些?是在怎样的基础上发展起来的?又怎样为后面的知识学习作准备的?这节课的教学重点是什么?哪里是学生难以理解的?教学的难点是什么?等等准确地把握教材的知识点、生长点、重难点,教学才能对症下药、有的放矢——利用教材教材虽然规定了要教什么,但至于怎样教,运用哪些素材、事例、例题去教,则是教师自己的事情对于同一内容,不同版本的教材都有其不同的呈现方式,究竟哪种呈现方式好,哪种呈现方式与学生接受知识的动态过程更吻合,需要教师再选择、再加工、再创造——超越教材教材是教学线索,是教学话题,是教学案例,教师可根据教学实际对其进行加工组合:教材创设的情境对帮助学生学习有什么好处?视角是否独特?可不可以用更好地情境替代?教材提供的学习线索是什么?知识的形成过程为什么要这样设计?是否合理?有没有更合理的方案?每道例题、练习题的功能是什么?是否符合本班学生的实际?是不是有更合适的例习题来更换?等等3.从教学实践中选择题材以教育教学实践中的问题作为论文的选题,对我们这些处于一线的教师来说,不但可行,而且非常有必要因为对教育教学工作中碰到的各种问题,我们教师必须进行思考并作出自己的回答一个教师要教好书,就必须善于总结教育教学实践中的经验,把教育教学实践中体会到的、发现的、领悟到的点点滴滴,及时记录并加以研究和总结,这样才能不断提高自己,才能进一步地教好书,而研究和总结的东西如果形成了文字材料那就可能是一篇好的教研论文例如,如何搞好初中数学总复习工作是每个人都要考虑的问题,而且随着中考命题的改革,总复习也必须与时俱进,针对这个问题,不断进行教学研究,及时总结研究的体会,撰写教学论文再如对数学思想方法的渗透,数学思想方法是数学基础知识的重要组成部分,教材中没有专门的章节介绍它,而是伴随着基础知识的学习而展开的因此,我们在教学中一定要重视对常用数学思想方法的总结与提炼,它们是数学的精髓,是解题的指导思想,更能使人受益终身初中阶段常用的数学思想方法可分两类:一类是某些重要的数学思想方法,如方程思想、数形结合思想、分类思想、整体思想、函数思想、转化思想、样本估计总体思想、归纳思想、类比思想、换元法、配方法、待定系数法、图象法、面积法、添辅助线、估算法等;另一类是某些重要知识的运用,如非负数、奇偶数、比例性质、根的判别式、根与系数的关系、勾股定理等.它们贯穿在整个初中数学之中,可用专题的形式加以总结归纳,让学生弄清其来龙去脉,了解它的发展变化,掌握它们的适用范围和解题步骤要通过典型问题的分析、思考、总结,帮助学生弄清什么样的问题用什么样的方法来解决,并内化为经验,能自觉地应用,从而强化思想方法指导思维活动.学生掌握了这些思想方法,解题能力就能提高.又如,如何将竞赛辅导与常规教学相结合,可进行认真研究,在实践的基础上,撰写论文4.从教学反思中选择题材加强教学反思是任何学科都在强调的,是促进自身专业发展、提高自身素质的重要途径作为教师,我们只有通过对教育教学实践的反思,才能不断地调整前进的方向、不断地扫除成长中的障碍,从而不断地实现自我超越当然,教学反思可以是对自己亲身实践的反思,也可以是对他人教学实践的剖析可以说每一次对自己或他人的教育教学实践得失的反思、利弊的剖析,都可以寻找到我们要撰写教研文章的题目教学反思的一种常见而有效的形式是听课、评课,我们可以从这种交流中寻找题材教研论文往往是始于问题,也是自己对某个问题长时间思考的结果因此,我们在进行听课和评课时,要注意从交流中收集自己平常关注较多、有所思考的素材,从中获得能写的题目和内容一旦选定了某个问题后,就要对这一问题进行持续性的关注,不断加以思考,直到对这个问题有了比较完整的看法,并形成论文为止三、立足课题,形成体系,全面提升自身素质中小学教育科研以课题为核心而展开研究,具有理性化、系统化等特点,这决定了教育科研活动比一般的教研活动更有利于教师的教育教学能力的迅速提高理性化上,教育科研活动要求我们老师边实践,边反思,边总结,因此,教育科研可以使我们的老师在“实践—反思—实践—总结”的良性循环中,迅速提升教育教学能力;系统化上,课题研究是一项系统工程,而且周期相对比较长,从计划、实施到总结,需要我们作出通盘的考虑,而正是这种通盘的考虑,才使得我们的研究涉及到教育教学的方方面面,也使得教育科研能够成为提高我们教师教育教学能力的最有效载体中学数学教师如果能将自己的教育科研的成果通过数学教育学术论文的形式总结出来,则自身的综合素质将得到迅速的提高1.从公布课题中寻找题材即从各级教育学会、教科所公布的教育科研课题中去找题材每一阶段,各级教育学会、教科所都会公布一下教育科研课题,我们可以结合各校、各学段、各人的具体情况进行选择、细化一般的,这类课题内容丰富,题材广泛,口子较大,我们要进行具体的细化2.从科研动向中寻找题材即从当前教育科研新动向结合自己工作的实际情况来寻找题材 以《学科教学中学生综合素质的培养研究》为例,2002年秋季,新课程改革实验在全国铺开,素质教育于二十世纪九十年代正式提出,并在全国进行了至上而下的深入研究 世纪需要的是高素质的综合性人才,如何在学校的各个学科教学中培养学生的综合素质,是一个值得认真研究的课题 然而在现实生活中,传统的教育观念仍然阻碍着素质教育的实施,应试教育在某些地区、某些时候还存在着很大的市场,“满堂灌”的课堂教学模式并不鲜见,尤其值得一提的是过重的学业负担束缚着学生创造力的发展,陈旧的千篇一律的课时、课程设计难以让学生展开自主发展的翅膀 如何将学生从重复的机械的学习中解放出来,如何更有效的开展素质教育,提高学生的素质,体现以人为本的思想,是值得我们认真思考的问题学校中课堂教学是教师向学生传授知识的主阵地,因此探讨课堂教学中学科教学与素质教育的关系,实施学科教学中学生综合素质的培养,对于实施新的课程方案,对于新的一轮课堂教学的改革,让学生得到自主发展,让每个学生学有所得,学有所长,是有一定意义的教而不研则浅,研而不教则虚 只要我们有一双善于发现的慧眼,从平时所做、所看和所思去寻找自己想写而又能写问题,开展教育教学研究,撰写教育教学论文,把教学和教研有机结合起来,实现教研相长,就一定能不断促进自身的专业成长
比如说数的历史,无理数的由来,还可以设计一个统计表按内容展开写,关于环保的,都行!
密铺的学问 ��地砖的形状往往是正方形的,也有长方形的,我们还见过正六边形的地砖。无论是正方形、长方形、还是正六边形的地砖,都可以将一块地面的中间不留空隙、也不重叠地铺满,也就是密铺。还有什么形状的图形可以密铺地面呢?同学们在思考这一问题时总是借助于画出的图形去实验,通过实际观察而得出结论。 ��其实用地砖铺地这一生活问题也有数学方面的道理,可以用数学中学到的圆周角是36O度这一知识从理论上分析、解决。 ��我们都知道,铺地时要把地面铺满,地砖与地砖之间就不能留有空隙。如果用的地砖是正方形,它的每个角都是直角,那么4个正方形拼在一起,在公共顶点处的4个角,正好拼成一个36O度的周角。正六边形的每个角都是120度, 3个正六边形拼在一起时,在公共顶点上的3个角度数的和正好也是36O度。除了正方形、长方形以外,正三角形也能把地面密铺。因为正三角形的每个内角都是6O度,6个正三角形拼在一起时,在公共顶点处的6个角的度数和正好是36O度。 ��正因为正方形、正六边形拼合以后,在公共顶点上几个角度数的和正好是36O度,这就保证了能把地面密铺,而且还比较美观。
为节约能源,某单位按以下规定收取每月电费:用电不超过140度,按每度43元收费;如果超过140度,超过部分按每度57元收费。若墨用电户四月费的电费平均每度5元,问该用电户四月份应缴电费多少元? 设总用电x度:[(x-140)*57+140*43]/x=5 57x-8+2=5x 07x=6 x=280 再分步算: 140*43=2 (280-140)*57=8 8+2=140 1)某大商场家电部送货人员与销售人员人数之比为1:8。今年夏天由于家电购买量明显增多,家电部经理从销售人员中抽调了22人去送货。结果送货人员与销售人数之比为2:5。求这个商场家电部原来各有多少名送货人员和销售人员? 设送货人员有X人,则销售人员为8X人。 (X+22)/(8X-22)=2/5 5*(X+22)=2*(8X-22) 5X+110=16X-44 11X=154 X=14 8X=8*14=112 这个商场家电部原来有14名送货人员,112名销售人员 现对某商品降价10%促销,为了使销售金额不变,销售量要比按原价销售时增加百分之几? 设:增加x% 90%*(1+x%)=1 解得: x=1/9 所以,销售量要比按原价销售时增加11% 甲.乙两种商品的原单价和为100元,因市场变化,甲商品降10%,乙商品提价5%调价后两商品的单价和比原单价和提高2%,甲.乙两商品原单价各是多少/ 设甲商品原单价为X元,那么乙为100-X (1-10%)X+(1+5%)(100-X)=100(1+2%) 结果X=20元 甲 100-20=80 乙 甲车间人数比乙车间人数的4/5少30人,如果从乙车间调10人到甲车间去,那么甲车间的人数就是乙车间的3/4。求原来每个车间的人数。 设乙车间有X人,根据总人数相等,列出方程: X+4/5X-30=X-10+3/4(X-10) X=250 所以甲车间人数为250*4/5-30= 说明: 等式左边是调前的,等式右边是调后的 甲骑自行车从A地到B地,乙骑自行车从B地到A地,两人都均速前进,以知两人在上午8时同时出发,到上午10时,两人还相距36千米,到中午12时,两人又相距36千米,求A.B两地间的路程?(列方程) 设A,B两地路程为X x-(x/4)=x-72 x=288 答:A,B两地路程为288 甲、乙两车长度均为180米,若两列车相对行驶,从车头相遇到车尾离开共12秒;若同向行驶,从甲车头遇到乙车尾,到甲车尾超过乙车头需60秒,车的速度不变,求甲、乙两车的速度。 二车的速度和是:[180*2]/12=30米/秒 设甲速度是X,则乙的速度是30-X 180*2=60[X-(30-X)] X=18 即甲车的速度是18米/秒,乙车的速度是:12米/秒 两根同样长的蜡烛,粗的可燃3小时,细的可燃8/3小时,停电时,同时点燃两根蜡烛,来电时同时吹灭,粗的是细的长度的2倍,求停电的时间 设停电的时间是X 设总长是单位1,那么粗的一时间燃1/3,细的是3/8 1-X/3=2[1-3X/8] X=2。4 即停电了2。4小时。 某小组计划做一批“中国结”,如果每人做5个,那么比计划多了9个;如果每人做4个,那么比计划少了15个,小组成员共有多少名?他们计划做多少个“中国结”? 设小组成员有x名 5x=4x+15+9 5x-4x=15+9 某中学组织初一学生进行春游,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满。试问 (1) 初一年级人数是多少?原计划租用45座客车多少辆? 解:租用45座客车x辆,租用60座客车(x-1)辆, 45x+15=60(x-1) 解之得:x=5 45x+15=240(人) 答:初一年级学生人数是240人, 计划租用45座客车为5辆 将一批会计报表输入电脑,甲单独做需20h完成,乙单独做需12h完成.现在先由甲单独做4h,剩下的部分由甲,乙合作完成,甲,乙两人合作的时间是多少? 解;设为XH 1/5+1/20X+1/12X=1 8/60X=4/5 X=6 甲,乙两人合作的时间是6H 甲乙丙三个数的和是53,以知甲数和乙数的比是4:3,丙数比乙数少2,乙数是(),丙数是() 设甲数为4X则乙为3X丙为3X- 4X+3X+3X-2=53 10X=53+2 10X=55 X=5 3X=5 3X-2=5-2=5 乙为5,丙为5 粗蜡烛和细蜡烛的长短一样,粗蜡烛可燃5小时,细蜡烛可燃4小时,一次停电后同时点燃这两只蜡烛,来电后同时熄灭,结果发现粗蜡烛的长是细蜡烛长的4倍,求停电多长时间? 设停电x小时 粗蜡烛每小时燃烧1/5,细蜡烛是1/4 1-1/5X=4(1-1/4) 1-1/5X=4-X -1/5+X=4-1 4/5X=3 X=15/4 一个三位数,百位上的数字比十位上的数字大1,个位上的数字比十位上的数字的3倍少2,若将三个数字顺序颠倒后,所得的三位数与原三位数的和是1171,求这个三位数 设十位数为x 则 100×(x+1)+10x+3x-2+100*(x+1)+10x+x+1=1171 化简得 424x=1272 所以:x=3 则这个三位数为437 一年级三个班为希望小学捐赠图书,一班娟了152册,二班捐书数是三个班级的平均数,三班捐书数是年级捐书总数的40%,三个班共捐了多少图书? 解:设⑵班捐x册 3x=152+x+3xX40% 3x=152+x+6/5x 3x-x-6/5x=152 4/5x=152 x=190…⑵班 190X3=570(本) a b 两地相距31千米,甲从a地骑自行车去b地 一小时后乙骑摩托车也从a地去b地 已知甲每小时行12千米 乙每小时行28千米 问乙出发后多少小时追上甲 设乙出发x小时后追上甲,列方程 12(X+1)=28X X=75小时,即45分钟 15、一艘货船的载重量是400t,容积是860m^现在要装生铁和棉花两种货物,生铁每吨体积是3m^3,棉花每吨体积是4m^生铁和棉花各装多少吨,才能充分利用这艘船的载重量和容积? 设铁x吨,棉花为400-x吨 3x+4*(400-x)=860 x=200t 答案为铁和棉花各200吨 16、某电脑公司销售A、B两种品牌电脑,前年共卖出2200台,去年A种电脑卖出的数量比前年多6%,B种电脑卖出的数量比前年减少5%,两种电脑的总销量增加了110台。前年A、B两种电脑各卖了多少台? 设前年A电脑卖出了x台,B电脑卖出了2200-x台 去年A电脑为06x,B电脑为95(2200-x) 06x+95*(2200-x)=2200+110 x=2000 则A电脑2000台,B电脑200台 地球上面面积约等于陆地面积的29分之71倍,地球的表面积约等于1亿平方公里,求地球上陆地面积是多少?(精确到1亿平方公里) 设陆地的面积是X X+71/29X=1 X=479 即陆地的面积是:5亿平方公里。 内径为90毫米的圆柱形长玻璃杯(已装满水)向一个地面直径为131*131平方毫米,内高为81毫米的长方形铁盒到水,当铁盒装满水时,玻璃杯中水的高度下降多少? 设下降高度是X 下降的水的体积等于铁盒中的水的体积。 14*45*45*X=131*131*81 X=6 水面下降6毫米。 内径为120毫米的圆柱形玻璃杯,和内径为300毫米、内高为32毫米的圆柱形玻璃盘可以盛同样多的水,求玻璃杯的内高? 内径为120毫米的圆柱形玻璃杯,和内径为300毫米,内高为32毫米的圆柱形玻璃盘可以盛同样多的水 所以两个容器体积相等 内径为300毫米,内高为32毫米的圆柱形玻璃盘体积 V=π(300/2)^2*32=720000π 设玻璃杯的内高为X 那么 X*π(120/2)^2=720000π X=200毫米 将内径为200毫米的圆柱形水桶中的满桶水倒入一个内部长、宽、高分别为300毫米、300毫米、80毫米的长方形铁盒,正好倒满。求圆柱形水桶的水高?(精确到毫米。派取14) 设水桶的高是X 14*100*100*X=300*300*80 X=229 即水桶的高是229毫米 某地下管道由甲工程队单独铺设需要12天,由乙工程队单独修设需要18天。如果有由两个工程队从两端同时想象施工,要多少天可以铺好? 解:设X天可以铺好 1/18X+1/12X=1 2/36X+3/36X=1 5/36X=1 X=1除以5/36 X=1乘以36/5 X=36/5 即要36/5天