期刊问答网 论文发表 期刊发表 期刊问答
  • 回答数

    5

  • 浏览数

    123

月光下的虫
首页 > 期刊问答网 > 期刊问答 > 对数学的认识3000字论文题目怎么写

5个回答 默认排序1
  • 默认排序
  • 按时间排序

药药~~

已采纳
“数学是美的。”经常有数学家这么讲,那么,数学到底美不美呢?大一第二学期我们接触了高数这门课,本来觉得应该比高中的数学稍微难一点吧,可是一上课才发现并不是难一点,而是难很多很多,比高中的数学更加抽象,更加难理解。但是慢慢的你会发现其实高数是一门学问,而且这门学问也有他的美。仔细想了想,发现数学的美体现在方方面面,就比如自然之美,简洁之美,对称之美,逻辑之美等等,中国悠久历史所积淀出来的文学底蕴,为中国的数学染上了一层夺目的别样的颜色,这就是数学之美,总之,数学并不像有些人认为的那般鼓噪乏味,他不是定理公式的积累,而是一种美的学科。在中国书香四溢的文学背景下,数学也闪烁着不一样的光辉。也经常听到有同学发出这样的疑问:“我们为什么要学数学?”不知道这些人当中有没有认真思考过这个问题,我倒是稀里糊涂读到大学才明白一点的。数学,我们学的应该是一种严谨的思维,一种观念。出了学校门,如果我们还能经常使用数学的眼光来观察周围事物,那么,这个数学才没有白学。我一直觉得,如果你把函数真学懂了,对已知和未知的依存关系就会特别敏感,社会上的许多看似纷繁复杂的事件,在你眼里就能看到关键因素,形成函数式。你会有另一种看待万事万物人视野。我们学数学,目的是学解题技巧?是挤进名校的砝码?还是将来能谋份不错的职业?数学的发源地在希腊,注定数学的性格就是超越的,我们把它作为换取利益的工具时,一开始这条路就走岔来的。所以,要培养好我们学数学,最初就要培养我们有良好的数学素养,求真,求美,求善。当然,数学一直是人类文明发展的主要文化力量,同时人类文化的发展又极大地影响了数学的进步;而且,数学还是一种艺术,因此,数学不但具有科学价值,还具有文化和艺术的价值。那么,这就需要我们一步步的认知到数学的各种价值,可以从生活中的数学学得数学思想方法与文化以及数学与人文精神、文化素质间的联系。总之学好高数,此生不后悔。

对数学的认识3000字论文题目怎么写

228 评论(10)

简单R7

探究大桥的热胀冷缩度分式“家族”中的亲缘探究小议“黄金分割”如何在数学课堂教学中培养学生的主体意识论数学对称之美一台饮水机创造的意想不到的实惠
172 评论(9)

jjliwc

数学家庭中的一对孪生兄弟――浅谈轴对称图形的应用数学的世界真可谓是浩瀚无比。由点到线,由线到面,由面到体。无不蕴藏着丰富的知识。我记得曾经有一句著名的格言:数学比科学大得多,因为它是科学的语言。可想而知,数学的伟大与魅力了吧!然而,在数学的大家庭中。有一对兄弟深深的吸引了我,他们的形状,他们的关系,他们的普遍性,让人觉得他们一直在我们的身边,离我们很近很近。他们就是轴对称图形。轴对称图形是一个一定要沿着某直线折叠后,直线两旁的部分互相重合的图形,之所以说到他们的关系是因为他们两个总是被一条直线所连着,好似一对分不开的兄弟,关系十分的密切。把他们拉在一起的这条直线就是他们的对称轴。当然这条对称轴就像一个公正的法官。左右两边的长度、面积、大小等,都一点儿也不差,唯一不同的就是他们所朝的方向。在数学的课本上,我们看见过他们的身影,我们也接触和了解过他们。但是他们给我印象更多的,却是他们在日常生活中所扮演、组成的图形或者可以说是事物。一、生活当中的轴对称图形1、自然界中的轴对称图形当我漫步在街头时,我时常看见飞来飞去的蝴蝶。当一只蝴蝶停留在花朵上,张合着翅膀时,我发现如果将蝴蝶两只触角的中点与尾部相连接,连接好的线段所在的那一条直线就是其对称轴。而右边的翅膀就像是左边的翅膀沿着对称轴翻过去的图形。跟蝴蝶一样是轴对称图形的动物还有很多。比如蜻蜓、飞蛾等。如果到了秋天,远看稻田,金黄的一片,不禁使人感觉到又是一个丰收的季节。就在这个令人喜悦的季节里,我行走在田边的小路上,随手捡起了一片金黄的树叶,仔细的观察了一下,发现其实树叶也有对称轴。如果我们将树叶中间的那根经,当成是其左右两边的对称轴,那将树叶右边部分沿着这条对称轴对折过去,正好与左边的一半树叶重合。2、商标中的轴对称图形有一次,我跟我的家人去中国银行取钱,我无意间发现中国银行的标志也是一个轴对称图形。这个图形的对称轴有两条。第一条是图标中两竖相连接所形成的,而另一条就是方框上下两条横线连接的线段的中点,所在的那一条直线就是其第二条对称轴。和中国银行一样的还有中国联通、中国农业银行以及奔驰汽车等轴对称图形。但是如果大家觉得前面几个例子,平时都没有注意到的话,那么下面说到的这个例子大家肯定熟悉的不得了。这个例子就是商标,我先来举一个吧。平时我最大的兴趣就是吃零食。所以我对“旺旺”这个商标熟悉的不得了。我发现在旺旺这个商标当中,将其头发上的一个中点到两脚脚后跟之间的线段的中点,想连接的线段所在的那一条直线就是其对称轴。也正是这条对称轴将旺旺这个图标分成了相等的两份。像旺旺这样具有对称轴的商标还有很多。比如:五粮液的商标、麦当劳的商标、CONVERSE(匡威)的商标等等。而且这些图形都是我们日常生活中常见的,这也不告诉了我们,只要我们认真、仔细的观察生活,数学的无处不在吗。二、建筑当中的轴对称图形说了生活中较为普通也较常见的轴对称图形后,也应该说说在建筑方面关于轴对称的宏伟建筑了。像我们中国的天安门城楼。如果用线段连接天安门城楼的左右两边,这条线段的中点所在的直线就是对称轴了,这条对称轴不就把天安门城楼分成了相同的两份了吗?法国的埃菲尔铁塔,是法国标志性建筑之一。它的对称轴就是把铁塔底部的两边相连接。连接后的线段的中点与塔尖的点相连接的线段所在那一条直线了。还有一些建筑也利用了轴对称的方法,他们在建筑的前方建了一个很大的水池,使建筑倒映在水中,从而形成了轴对称的效果,也增大了空间,使原本的建筑更美观,更加壮观。像泰姬陵,它不就是建筑与轴对称图形相结合的最好例子吗。在地球的另一边,有一座建筑物深深地影响着整个世界的历史,这座建筑物就是白宫。这是一座位于美国华盛顿的著名行政大楼。白宫著名的背后,轴对称起了极其重要的作用。白宫它的对称轴就是顶部的点与底部左右两边线段的中点,相连接的线段所在的那一条直线。对了,还有我们每个人家里都会有门,一些建筑师为了使门显得更加大气,更加庄重。就把门进行设计,使门的左右两边相同,古代衙门的大门和一些官府府邸的大门也设计成了轴对称的形式。使大门显得更加有气势,愈发显的威严。从中我们也不难发现,只要懂得轴对称图形,善于利用轴对称图形,就能使轴对称图形溶入到方方面面。三、文学当中的轴对称图形1、文字中的轴对称图形每个人都知道,我们中华民族有着5000年的悠久文化。这么多年的文化所沉淀下来的瑰宝可谓是数不胜数。剪纸是我们民族十分古老的民间艺术之一。就是在这艺术品当中也不乏有轴对称的应用。让我来举个例子吧。我还记得以前我奶奶教我剪繁体的“喜”字时,首先是将红纸对折一下,之后用剪刀在纸上挥舞了一会。打开刚刚对折的纸时,出现了一个“喜”字,当时我看了之后,心里那个高兴啊,惊奇啊,但是就是不知道为什么会这样。现在长大了,我也知道了其实在剪“喜”字的过程当中,也运用了轴对称。还有许多剪纸作品,也正是因为有了轴对称的存在,使其更加精致、美观。当然我们现在所写的简体字中,也有轴对称。如“丰”“目”“尖”等。文字的对称轴较为好找,横一横,竖一竖,基本上就能够找到。其实有时候,对称轴也具有复制的功能,它能够把一个字,分成与其相同的两个字,像“二”如果把它的对称轴当作是第一横的中点和第二横的中点,所连接成的线段所在的直线的话。那么左右两边的图案,不是可以近似的看成两个二吗?此时轴对称就具有复制的功能,但是在我的眼里它还具有另一个功能。就拿这个“一”来说吧。与前面相同,也是画竖下来的对称轴。画好之后,要把这条对称轴当成这个字原有的,那么你就会发现。“一”与这条对称轴就组成了一个“十”字。这就是在我眼里轴对称图形的第二个功能。能够使一个字变成另外一个字。2、文学中的轴对称图形刚刚说的都是文字当中轴对称的应用。那由字所组成的句子呢?其实仔细推敲一下,也有。我记得我以前与同学们都在玩一个游戏,就是一个人说出一句话,另一个人马上就得把这个句子反着读出来。在整个游戏过程当中,有一句话给我留下了深刻的印象“上海自来水来自海上”当我们把这个句子反着读一便时,就会发现它与正着读的语序一模一样。再仔细看一看,这又是一个关于轴对称的应用。这么来说吧,如果我们把“上海自来水来自海上”中的水字不看,那么两个“来”字的中点所在的那一条直线,就可以把这句话分成相等的两等份,这不就证明了句子当中也有轴对称的应用吗?这一系列的例子,也让我们看出了轴对称在文学方面所做出的成就,它能使一些作品更加完美,有画龙点睛的作用。也能使文字变化起来,使句子顺口起来。给文字与句子带来更多的趣味,也给文学添上了十分美丽的一笔。四、奥运当中的轴对称图形2008年北京奥运会即将来临。在这个令全中国人都兴奋起来,令全世界人都以不同形式参与进来的盛会中。我们也不难发现轴对称图形——奥运五环旗。我们可以把奥运五环旗(如图一),黄、绿两环相接触的地方点A与黑环上的点B相连接,此时对称轴就是线段A、B所在的那一条直线。在奥运会上有奥运五环旗当然也会有奥运吉祥物,2008年北京奥运会的吉祥物是奥运福娃。仔细看看我们的奥运福娃不禁让人喜欢的不得了。尤其是福娃晶晶更是惹人喜爱。他的憨厚,他的朴实,无不给人亲近的感觉。图二就是福娃晶晶在举重的画面。如果大家看一下图二这张图片,就会发现如果把这张图片中的点A与下端的点B相连接。那么这条线段所在的那一条直线就是福娃晶晶的对称轴。想不到吧,原来奥运福娃也是轴对称图形。还有在奥运会上,当各国的国旗徐徐上升时,又引发了我对轴对称图形的联想。像英国的国旗,它的对称轴就是国旗上下两边线段的中点,所连成的线段所在的那一条直线。像这样的国旗还有很多。如加拿大国旗、意大利国旗等等。轴对称图形的千变万化,使我眼花缭乱,头晕目眩。在它每一次变化中,都可以发现许多的惊喜。轴对称变化它也无处不在,它存在于各个角落,这也给我们研究它带来了很多的便利。在研究轴对称图形的过程中,我懂得了只有我们用心观察,才能发现数学。只有我们认识数学,在生活中善于利用数学,我们才能将数学溶入到方方面面。而且只有我们将数学溶入到方方面面,我们才能更加好的去研究数学。其实数学的世界真的好大好大。此时我真想将自己变成大山伫立在数学当中。变成流水穿梭与数学之中,化为白云漂浮在数学之中,成为鸟儿翱翔与数学之中。真诚的希望大家用发现美的眼睛,去发现数学!感受数学!数学中角的计算出现的跨科学趋势数学中角的计算可以有多种手段,距目前为止,我们所学的有证明三角形全等、等边三角形和等腰三角形,还有八年级上册第一章的内容,平行线。可在做第一章目标与评定的第11题时,我闷了!1、原题:在台球比赛中,母球运动时,如果母球P击中桌边点A,经桌边反弹后击中相邻的另一条桌边的点B,再次反弹,那么母球P经过的路线BC与PA平行吗?图1如图1,运用常规的数学解题思路几乎难以解决,我傻傻地思索了很久,也和几个同学一同讨论过,但是始终没有一重好的方法去解决。甚至于我们在猜想这道题目是不是出错了,于是我们满怀信心地找到了老师,问了这道题的解法。而老师告诉我们的方法却是:解:根据物理中的平面镜反射原理(反射角等于入射角),已知∠2=∠1,∠4=∠3,∵∠2与∠3互余 ∴∠1+∠2+∠3+∠4=180°∵∠1+∠2+∠3+∠4+∠5+∠6=360°∴∠5+∠6=180°∴PA‖CB(同旁内角互补,两直线平行)我惊呆了,这简直不可思议,数学的解题中竟然出现要根据科学中的平面镜反射原理?我问老师数学解题中可以出现跨科学的知识吗?老师说可以,我疑惑不解。2、中考中数学角的运算出现的跨科学题目:为什么在数学角的计算中会出现物理知识呢?我开始了调查与搜索,结果仍然大吃一惊,原来,中考命题中已经存在了跨学科综合题的趋势。图2II①(2002年江苏盐城市中考题)如图2所示,光线l照射到平面镜I上,然后在平面镜I、II之间来回反射,已知∠α=55°,∠γ=75°则∠β多少?解:根据物理中的平面镜反射原理(反射角等于入射角),得:∠BAC=∠α=55°,∠CBA=∠γ=75°∴∠BCA=180°-∠BAC-∠CBA=180°-130°=50°由物理中“法线”的知识得∠ACN=∠BCN= ∠CAN=25°又∵∠BCN+∠β=90°∴∠β=90°-∠BCN=65°②(2003年青海省中考题)如图3所示,平面镜α、β是交角为θ,入射光线AO平行于β入射到α上,经两次反射后的反射光线O′B又平行于α,则∠θ等于多少?解:∵BO′‖α∴∠1=∠2(两直线平行,同位角相等),且∠3=∠4(两直线平行,内错角相等)∵AO‖β∴∠1=∠5(两直线平行,同位角相等),根据物理中的平面镜反射原理(反射角等于入射角)得:∠2=∠3,∠5=∠6,∴得到:∠1=∠2=∠3=∠4=∠5=∠6∵∠4+∠5+∠6=180°∴∠4=∠5=∠6=60°∴∠1=∠2=∠3=∠4=∠5=∠6=60°∵∠3+∠6+∠θ=180°∴∠θ=180°-∠3-∠6=60°从上面几道题目的解题过程中我们不难发现,无论是普通生活中角的计算还是中考的数学角计算的试题中都已部分渗入了科学的内容,特别是光学知识,从而使原本用纯数学的知识很难解决的问题,在科学的辅助下顺利成功地解决了。是的,这说明了跨学科的综合题目现在已经成为了中考命题的一个新趋势。3、分析原因和他对现代学生的影响:为什么会出现这样的综合题呢?仔细想想,其实很简单,因为用数学知识解决实际问题这是学习数学的出发点,而当实际问题难以真正用纯数学的方式解决时,学科的贯通性自然也就成了解题的必然路径,不难想象,在今后更复杂的世界中,跨学科来解决更多实际问题而会变得多么普遍和重要。但这种趋势对于我们学生来说,无疑是一种新的巨大的挑战,学科的贯通性、思维的连锁性,这都是现代学生比以往学生更需具备的。这将是一种挑战,思维的定势将是一种灭亡,例如上述的3道典型的例题,如果一个学生只想用纯粹的数学思维去解决,而不去用更多的眼光去思考的话,那将会相当的困难,时间上的消耗也是致命的。反之,如果能将学科的知识掌握得当,且运用得很好,那么这样的题型将会变得异常地简单。4、总结,提出我的看法与建议:从课本上的那题角的运算,一直到如今的中考部分角计算的试题中,竟然会遇到数学解题用到科学知识的怪事?开始我是一头雾水,通过搜索和分析,现在终于是恍然大悟:这原来已经是一种中考命题的一种趋势。这同样也是数学在生活中运用范围的提升而产生的一种新的解题思路和方法。我为我的发现而感到吃惊也十分的欣喜,幸好我发现了这样的一个问题,我相信我在今后的数学解题中将会更加的小心谨慎,可万一不是这样的综合题而我又糊里糊涂地用了不同学科的知识导致不必要的失分怎么办?这是非常可惜的,但对于现在的我们来讲,却的确是一个实实在在的问题,所以我提出了以下的建议和我的看法:① 学科的全面发展,遇到了跨学科的综合题,偏科绝对是不允许的,只有在学科上是全面发展的学生胜率才会更大,毕竟运用的是两门甚至更多门学科的知识却是一门的分数,因为另一门学科的不足丢了这一门学科的分数,十分可惜。② 做的题要多,累积经验,题做多了,对这些类型的题目也会变得敏感起来,思路也会畅通无阻,所以经验很重要,做多了,看到综合题,就自然会想到用哪几个学科的知识。③ 虽然要注意这样的题型,但不能滥用,一些同学会因为神经过度紧张,过度敏感,看到什么不眼熟的题型就着手使用不同学科的知识,结果导致失分惨重,这是不对的,面对考试,应尽量放松,先要想思路,有阻碍时怎么解决,发现用他科知识可解决时方可使用,以保证不失分。④ 现在数学中角的运算出现了跨科学趋势,这是知识发展的结果,相信会有更多更新的综合题在这种趋势中产生,只希望我们能够迎着趋势,一同进步!
281 评论(13)

燕仔仔仔

数学实验在数学教与学中的作用 摘要:数学实验一般具有可操作性和实践性,注重实测与直观,让数学在"实验"的过程中对所研究的内容"可视化",让学生从中获得对数,形的观念,并逐步对其适度抽象,进行更高层次上的"再实验",进而体会数学的研究方法和构成体系,使学生在活动中认识并改造着自己的数学知识结构。因此,数学实验可以使学生逐步学会数学思维的物质实践方法,掌握数学研究的规律,培养理性思考问题的习惯,能够解决学科的和实际生活的问题,并检验和论证问题的结果 谈到做实验,一定容易联想到物理实验、化学实验、生物实验等等;谈到学数学,自然会联想到做数学题,题海战术几乎成为数学学科的代名词。难道数学也可以做实验?“数学实验”是为了探索数学知识、检验数学结论(或假设)而进行的某种操作或思维活动。 数学实验一般具有可操作性和实践性,注重实测与直观,让数学在"实验"的过程中对所研究的内容"可视化",让学生从中获得对数,形的观念,并逐步对其适度抽象,进行更高层次上的"再实验",进而体会数学的研究方法和构成体系,使学生在活动中认识并改造着自己的数学知识结构。因此,数学实验可以使学生逐步学会数学思维的物质实践方法,掌握数学研究的规律,培养理性思考问题的习惯,能够解决学科的和实际生活的问题,并检验和论证问题的结果这是新课标所倡导的数学素养和数学的人文价值所在! “数学实验”对学生数学学习的影响 数学实验,是学生通过观察、操作、试验等实践活动来进行数学九月开学季,老师你们准备好了吗?幼教开学准备小学教师教案小学教师工作计初中教师教案初中教师工作计学习的一种形式。抽象的道理很重要,但要用一切办法使它们能看得见摸得着做数学式样这种学习方式,不是学生被动接受课本上的或老师叙述的现成结论,而是学生从自己的“数学现实”出发,通过自己动手、动脑,用观察、模仿、实验、猜想等手段获得经验,逐步建构并发展自己的数学认知结构的活动过程。我在近几年的数学教学实践中,亲身体会到动手实验在小学数学教学中有不容忽视的作用。 一、动手实验可以培养学生学习数学的兴趣 动手实验教学符合小学生的年龄和思维特点,它是一种特殊形式的“玩”。通过这种学习方式来培养学生学数学的兴趣,是符合学生认知规律的。动手实验的过程又是学生动手实践、互相合作、探索交流的过程,因而它不仅培养了学生的兴趣也培养了学生的独立思考意识和小组合作的意识。如在学习轴对称图形一课时,我让学生准备了蜻蜓、蝴蝶、树叶等。首先引导学生观察、分析、小组讨论,然后通过提问、动手制作,最后得出结论。整个教学过程都贯穿着动手实验、小组合作,这既激发了学生的学习兴趣,又提高了课堂教学的效率,使学生在动手实验中感受到了学习的乐趣。在乐趣中撷取了知识,使学习变得自然、轻松、高效,从而达到了教学目的。 二、动手实验可以加强学生对数学概念的理解 数学是一门抽象的学科。学生学习数学,感觉往往是单调乏味的,特别是对概念的理解。心理学研究表明,学生认识规律是“感知——表象——概念”,而动手实验符合这一规律,能变学生被动地听为主动地学,充分调动学生的各种感官参与教学活动,去感知大量直观形象的事物,获得感性知识,形成知识的表象,并诱发学生积极探索,从事物的表象中概括出事物的本质特征,从而形成科学的概念。使得抽象的概念变得具体形象,在学生头脑中形成活的印象,从而达到预期的教学效果。 三、动手实验有助于学生理解数学算理 数学是研究客观世界数量关系和空间形式的科学。数量关系和空间形式在数学中相互渗透、互相转化。数学家华罗庚指出,数缺形时少直观,形缺数时难入微。这就要求在研究数学问题时,把数形知识结合起来,引导学生从数的方面用分析的方法进行抽象思维,从形的方面进行形象思维。通过动手实验,可促进这一过程的完成。在实验操作中从形的方面进行具体思考后逐步过渡到数的方面进行思维,这样不仅可以帮助学生较为深刻地理解算理,同时促进了学生形象思维和逻辑思维的协调发展。 四、 动手实验有助于学生解决实际问题 知识经济的主要特征是知识的创新和应用。所以,要适应时代的要求,就要培养学生对所学知识的应用能力。学数学教学应充分利用学生动手实验来培养学生运用数学知识解决实际问题的意识和能力。 五、动手实验可以培养学生的逻辑思维能力 动手实验教学从学生已有的认知水平出发,抓住知识间的内在联系,培养了学生的逻辑思维能力。学生逻辑思维能力的培养要以动手实验为基础,才能使学生感受到其中的乐趣,从而收到意想不到的教学收获。 六、动手实验可以培养学生的创新能力 新课程倡导培养学生的创新能力,而动手实验教学是培养学生创新能力的必要途径,是数学教学中不可缺少的重要环节。表面上看,动手实验浪费了师生大量的时间,但它更有突出之处,使学生不仅善于提出问题、分析问题,还会培养学生敢于主动探究和创新的能力。 动手实验教学是“以学习者为中心,以活动为主,平等参与”的素质教育模式。它打破了以往知识的直接呈现,融知识于活动之中。在平等参与的前提下,通过亲手操作,亲身体验来理解、验证数学原理。这比起那些单纯的让学生死记硬背的传统教学模式而言,更加体现了素质教育的艺术美,体现了素质教育的活力。 因此,动手实验教学是一种非常有效并切实可行的教学模式。奋战在第一线的数学教师,有必要充分认识到动手实验在数学教学中的重要作用,让我们运用动手实验这种有力的教学手段来打造出更多适应社会需要的高素质的栋梁之才。
159 评论(14)

墨锦倾023

高数学习对许多大一学生生来讲, 有些困难,成绩不理想。教师一直在苦苦思考:虽然教师在授课过程中尽了种种努力, 但还是有许多学生学习不好, 这是什么原因?调查显示:这部分学生或者学习兴趣不高,或者学习不得要领。因而, 高数学习必须充分调动学习者的积极性, 掌握合适的学习方法,才能有所收获。1 学习者要意识到学习高数的重要性, 提高学习兴趣, 变被动学习为主动学习据了解, 许多学生意识不到高数学习的重要性,他们对大学课程里学习高数的重要性不甚清楚,也没有学习的热情,更谈不上积极性了。1 1 数学教育具有重要的基础性作用与素质教育作用现代信息、空间技术、核能利用、基因工程、微电子、纳米材料等引领的新技术革命, 以及现代人文科学的定量分析需要以数学为主要基础。数学学科严密的定义方式、缜密的逻辑思维、全面的系统分析是辩证唯物主义思想在数学学科中的集中反映, 在大学生素质教育中起着不可替代的作用。素质表现在数学意识、数学语言、数学技能、数学思维四个方面。素质的提高有助于学生形成良好的思想道德素质,科学文化素质,生理心理素质,从而提高人的素质。这是有例子可以验证的。以北京大学地质系为例,一个系就培养了48 位中科院院士, 而这得益于李四光先生的理念——加强数理基础, 原因就是学生的工科数学基础好、逻辑思维强、头脑清晰。1 2 培养对高数的兴趣能激发学习热情“兴趣是最好的老师”。心理学家布鲁纳认为:“学习是主动的过程,对学生学习内因的最好的激发是对所学教材的兴趣。”“有了兴趣就会乐此不疲,好之不倦,就会挤时间学习了。”学生只有对学习感兴趣,能把心理活动指向和集中在学习的对象上,感知活跃,注意力集中,观察敏锐,记忆持久而准确,思维敏锐而丰富,强化学习的内在动力,调动学习的积极性,激发智力和创造力,提高学习效率。1 提高学习高数的兴趣首先从了解数学史做起我们可以首先了解中国数学史,了解中国数学的萌芽、发展、全盛、衰弱的过程和原因;我们还可以从高数中的微积分发明的历史谈起,通过对历史的了解和感受来体会到数学的博大精深,激发探求欲望。
282 评论(14)

相关问答