yinsong810
优点:当你面对大量的数据 尤其是数据项目较多的时候,分别分析各组数据过程很繁琐。然而如果从中筛选几组数据分析,又会使得你的分析结果不够准确。 因子分析法就能很好的涵盖原始数据的各个项,同时将分析过程简化为因子项的分析。从而简便。缺点:因子分析只能面对综合性的评价。同时对数据的数据量和成分也有要求。需要先进行KOM检测数据是否可以运用因子分析法。 而且在设计调查表的时候也需要针对性的设计问题。 我现在就在DT调查表的设计。。。。。。祝我好运如果你想要了解因子分析的具体内容,或者实际运用,欢迎追问。 望采纳。 
探索性因子分析法的优点1、EFA法便于操作。2、当调查问卷含有很多问题时,EFA法显得非常有用。3、EFA法既是其他因子分析工具的基础(如计算因子得分的回归分析),也方便与其他工具结合使用(如验证性因子分析法)。探索性因子分析法的缺点1、变量必须有区间尺度。2、沉降数值至少要要变量总量的3倍。
将分析题项拖入选框中,点击进行“开始因子分析”(用户可主动设置因子个数)。因子分析(探索性因子分析)用于探索分析项应该分成几个因子,比如20个量表题项应该分成几个方面较为合适。因子分析通常有三个步骤:第一步是判断是否适合进行因子分析;第二步是因子与题项对应关系判断;第三步是因子命名。因子分析应用举例:1、案例当前有一份数据,共有12个量表题,希望将此12个量表题使用因子分析浓缩成几个维度,用于探索企业员工满意度的维度情况。研究人员在研究前预期分析项可分为4个维度(也可不事先假定),当然有可能个别项与因子对应关系并不合适,因此有可能对其进行删除处理。2、操作步骤将分析题项拖入选框中,点击进行“开始因子分析”(用户可主动设置因子个数)得到的分析结果如下:第一步:首先判断是否适合进行因子分析KMO和Bartlett检验结果SPSSAU对结果进行智能分析第二步:判断提取的因子个数第三步:是因子与题项对应关系判断因子与题项对应关系判断:假设预期为4个因子(变量),分析题项为12个;因子与题项交叉共得到48个数字,此数字称作”因子载荷系数”(因子载荷系数值表示分析项与因子之间的相关程度);针对每个因子(变量),对应12个”因子载荷系数”,针对每个分析项,则有4个”因子载荷系数值”(比如765,-066,093,075),选出3个数字绝对值大于4的那个值(765),如果其对应因子1,则说明此题项应该划分在因子1下面。第四步:对因子进行命名本次研究员工满意量表共提取出4个因子,此4个因子对应的题项分别为4个、3个和2个,对4个因子分别进行命名,分别为福利待遇因子、管理及制度因子、员工自主性因子和工作性质因子。