noblesteed
数学作为一种文化现象,早已是人们的常识历史地看,古希腊和文艺复兴时期的文化名人,往往本身就是数学家进入21世纪之后,数学文化的研究更加深入一个重要的标志是数学文化走进中小学课堂,渗入实际数学教学,努力使学生在学习数学过程中真正受到文化感染,产生文化共鸣,体会数学的文化品位,体察社会文化和数学文化之间的互动中国在春秋战国时期也有百家争鸣的学术风气,但是没有实行古希腊统治者之间的民主政治,而是实行君王统治制度春秋战国时期,也是知识分子自由表达见解的黄金年代当时的思想家和数学家,主要目标是帮助君王统治臣民,管理国家因此,中国的古代数学,多半以"管理数学"的形式出现,目的是为了丈量田亩,兴修水利,分配劳力,计算税收,运输粮食等国家管理的实用目标理性探讨在这里退居其次因此,从文化意义上看,中国数学可以说是"管理数学"和"木匠数学",存在的形式则是官方的文书古希腊的文化时尚,是追求精神上享受,以获得对大自然的理解为最高目标因此,"对顶角相等"这样的命题,在《几何原本》里列入命题15,借助公理3(等量减等量,其差相等)给予证明在中国的数学文化里,不可能给这样的直观命题留下位置 同样,中国数学强调实用的管理数学,却在算法上得到了长足的发展负数的运用,解方程的开根法,以及杨辉(贾宪)三角,祖冲之的圆周率计算,天元术那样的精致计算课题,也只能在中国诞生,而为古希腊文明所轻视 我们应当充分重视中国传统数学中的实用与算法的传统,同时又必须吸收人类一切有益的数学文化创造,包括古希腊的文化传统当进入21世纪的时候,我们作为地球村的村民,一定要溶入世界数学文化,将民族性和世界性有机地结合起来揭示数学文化内涵,走出数学孤立主义的阴影。数学的内涵,包括用数学的观点观察现实,构造数学模型,学习数学的语言,图表,符号表示,进行数学交流通过理性思维,培养严谨素质,追求创新精神,欣赏数学之美半个多世纪以前,著名数学家柯朗在名著《数学是什么》的序言中这样写道:"今天,数学教育的传统地位陷入严重的危机数学教学有时竟变成一种空洞的解题训练数学研究已出现一种过分专门化和过于强调抽象的趋势,而忽视了数学的应用以及与其他领域的联系教师学生和一般受过教育的人都要求有一个建设性的改造,其目的是要真正理解数学是一个有机整体,是科学思考与行动的基础" 2002年8月20日,丘成桐接受《东方时空》的采访时说:"我把《史记》当作歌剧来欣赏","由于我重视历史,而历史是宏观的,所以我在看数学问题时常常采取宏观的观点,和别人的看法不一样" 这是一位数学大家的数学文化阐述 《文汇报》2002年8月21日摘要刊出钱伟长的文章《哥丁根学派的追求》,其中提到:"这使我明白了:数学本身很美,然而不要被它迷了路应用数学的任务是解决实际问题,不是去完善许多数学方法,我们是以解决实际问题为己任的从这一观点上讲,我们应该是解决实际问题的优秀'屠夫',而不是制刀的'刀匠',更不是那种一辈子欣赏自己的刀多么锋利而不去解决实际问题的刀匠"这是一个力学家的数学文化观和所有文化现象一样,数学文化直接支配着人们的行动孤立主义的数学文化,一方面拒人于千里之外,使人望数学而生畏;另一方面,又孤芳自赏,自言自语,令人把数学家当成"怪人"学校里的数学,原本是青少年喜爱的学科,却成为过滤的"筛子",打人的"棒子"优秀的数学文化,会是美丽动人的数学王后,得心应手的仆人,聪明伶俐的宠物伴随着先进的数学文化,数学教学会变得生气勃勃,有血有肉,光彩照人多侧面地开展数学文化研究谈到数学文化,往往会联想到数学史确实,宏观地观察数学,从历史上考察数学的进步,确实是揭示数学文化层面的重要途径但是,除了这种宏观的历史考察之外,还应该有微观的一面,即从具体的数学概念,数学方法,数学思想中揭示数学的文化底蕴以下将阐述一些新视角,力求多侧面地展现数学文化 数学和文学数学和文学的思考方法往往是相通的举例来说,中学课程里有"对称",文学中则有"对仗"对称是一种变换,变过去了却有些性质保持不变轴对称,即是依对称轴对折,图形的形状和大小都保持不变那么对仗是什么 无非是上联变成下联,但是字词句的某些特性不变王维诗云:"明月松间照,清泉石上流"这里,明月对清泉,都是自然景物,没有变形容词"明"对"清",名词"月"对"泉",词性不变其余各词均如此变化中的不变性质,在文化中,文学中,数学中,都广泛存在着数学中的"对偶理论",拓扑学的变与不变,都是这种思想的体现文学意境也有和数学观念相通的地方徐利治先生早就指出:"孤帆远影碧空尽",正是极限概念的意境欧氏几何和中国古代的时空观初唐诗人陈子昂有句云:"前不见古人,后不见来者,念天地之悠悠,独怆然而涕下"这是时间和三维欧几里得空间的文学描述在陈子昂看来,时间是两头无限的,以他自己为原点,恰可比喻为一条直线天是平面,地是平面,人类生活在这悠远而空旷的时空里,不禁感慨万千数学正是把这种人生感受精确化,形式化诗人的想象可以补充我们的数学理解 数学与语言语言是文化的载体和外壳数学的一种文化表现形式,就是把数学溶入语言之中"不管三七二十一"涉及乘法口诀,"三下二除五就把它解决了"则是算盘口诀再如"万无一失",在中国语言里比喻"有绝对把握",但是,这句成语可以联系"小概率事件"进行思考"十万有一失"在航天器的零件中也是不允许的此外,"指数爆炸""直线上升"等等已经进入日常语言它们的含义可与事物的复杂性相联系(计算复杂性问题),正是所需要研究的"事业坐标""人生轨迹"也已经是人们耳熟能详的词语 数学的宏观和微观认识宏观和微观是从物理学借用过来的,后来变成一种常识性的名词以函数为例,初中和高中的函数概念有变量说和对应说之分,其实是宏观描述和微观刻画的区别初中的变量说,实际上是宏观观察,主要考察它的变化趋势和性态高中的对应则是微观的分析在分段函数的端点处,函数值在这一段,还是下一段,差一点都不行政治上有全局和局部,物理上有牛顿力学与量子力学,电影中有全景和细部,国画中有泼墨山水画和工笔花鸟画,其道理都是一样的是否要从这样的观点考察函数呢 数学和美学"1/2+1/3=2/5 "是不是和谐美 二次方程的求根公式美不美 这涉及到美学观三角函数课堂上应该提到音乐,立体几何课总得说说绘画,如何把立体的图形画在平面上欣赏艾舍尔的画,计算机画出的分形图,也是数学美的表现 
如何撰写数学论文呢? 1、数学论文的组成 数学论文具有类型多样、形式活泼等特点,有的侧重于经验的总结,实验结果的阐述,包括实验过程、手段、方法和结果的记录;有的侧重于理论性的研究,包括对研究课题的提出,对研究成果的分析、推导、论证和应用等。但不论哪类论文,主要由标题、摘要、前言、正文、结论、参考文献等部分组成。 标题就是论文的总题目,是文章基本内容的缩影,古人云:“立片言以居要,乃全篇之警策。”所以拟定标题应该力求简短、明确、质朴、醒目,既要防止太冗长,又要避免太概括,使人不明了;既要防止文不对题或过于陈旧,又要避免追求新颖、空泛而没有实际的内容。 摘要一般包括本课题研究的意义,研究的内容与方法,研究的成果或价值等,便于读者迅速了解全文的概貌。所以摘要应简明扼要,引人入胜,内容全面,重点突出,且能独立使用。 前言也称引言或绪言,一般包括本课题研究的背景或起点,需要研究的问题,研究的方法、手段,研究的意义或价值。需要注意的是,对研究的意义或价值应力求实事求是,既不可拔高,也不可贬低或过分谦虚。 正文是论文的主体,作为表达作者个人研究成果的部分,所占篇幅较大,有时还必须辅以必要的小标题,应力求概念清晰,论点明确,论证严密,论据充分,具有科学性、准确性和创新性,同时条理要清楚,文字应通俗简明。 结论是对正文中所分析论证的问题加以综合,概括出基本点,这是课题解决的答案。结论作为理论分析和实验的逻辑发展,是论述的概括集中和升华,由局部到一般,由具体事实、经验,上升到理论概括,是整篇论文的归宿,所以应力求完整、准确、鲜明,还应如实指出本理论的使用范围和成果的意义,以及本文尚未解决的问题和继续研究的方向。 参考文献是反映作者严肃的科学态度和研究工作的依据,其中包括撰写该论文所参考的书籍(作者姓名、书名、版次、页数、出版者、出版年份)或期刊(作者姓名、标题、刊物名称、卷或期、页数、年份)。 2、小学数学论文的撰写过程 第一步,选题、选材。 要想写什么内容的文章,无论是理论探讨方面,还是教材教法方面和解题方法技巧方面,以及教学经验总结方面,对阐述问题的深度、广度等,要心中有数,具有明确的目的性和主题性。 无论选择哪方面的内容与具体题材,都必须力求具有先进性、针对性和实践性,要想做到这一点,首先,根据文献检索方法,尽可能多地查阅资料,掌握国内外最新研究动态。其次,深入钻研这些文献资料,看看能否得到进一步启发,有无新的见解。尽管选题可能重复,类似的题材较多,但也可以从不同侧面结合不同实例,根据不同对象写出一定的新意来,使观点更明确,方法更有效,使其先进性、针对性、实用性更强。第三,选题要从实际出发,题目大小、题材的深度和广度要恰当。 第二步,拟纲、执笔。 论文选题确定后,就要注意写好提纲,这是写好文章的基础。首先,要将内容、结构布局好,要拟定一个写作提纲,准备分几个部分,各个部分集中讲几个问题,这些部分与问题之间的关系如何,都需要进一步精心设计,使其结构严谨、层次分明,具有科学性、逻辑性。其次,要注意各种文章的特点。写理论性的文章,最好能再确定大小标题,叙述上力求论点明确,可信度强,便于别人借鉴;写教材分析方面的文章,应进行比较,提出改进意见或提示值得深入研究的问题等。 第三步,修改、定稿。 修改是文章初稿完成后的一个加工过程,它包括对论文文字的修饰,以及科学性的推敲等。论文初稿形成后,应从头至尾反复地阅读,逐句逐段推敲,审核一下文中的论点是否明确,论据是否充分,论证是否合理,结构是否严谨,计算是否正确等。一篇好的小学数学论文,应该是数文并茂。就是说,既要有好的数学内容,又要有好的文字表达。所以,文字的工夫对数学论文来说很为重要。数学论文,贵在朴实,少用浮词,免得冲淡文章的中心,文字应通俗易懂,简明扼要,用词应准确简炼,表达完整,特别是中心内容一定要阐述透彻清楚。此外,书写要规范,题号、图号、标点也要正确。修改是一项细致的工作,只有对文稿反复推敲、修改,才能消除不应有的错误。只有经过反复修改加工,文章的质量才会不断提高。 希望对你有用!!! 数学论文的撰写 来自于:
学习“趣味数学”的心得体会你知道0与i谁大谁小?你知道毕达哥拉斯是何许人也?你知道似是而非型悖论和似非而是型悖论的区别么? 你能列举几位著名关于数学悖论的数学家?这些问题原本让学了十几年数学的我不知所答,但随着本学期对“趣味数学”课程地整合学习,我对这些问题逐渐明朗与了解。发现数学的发展伴随着人类的发展,上下五千年的人类文明都蕴藏着十分丰富的数学史料。通过学习让我们更加深入地了解数学的发展历程,以及相关数学悖论的知识。在数学悖论那漫漫长河中,也曾经历经第一、二、三次数学危机的过程,作为人类智慧的结晶,数学悖论不仅是人类文化的重要组成部分,而且始终是推动人类文明进步的重要力量。下面我就举“第一次数学危机”的例子来简单说明数学悖论的实际意义。“第一次数学危机”可以说就是一种悖论——代数悖论。公元前580~568年之间的古希腊,数学家毕达哥拉斯建立了毕达哥拉斯学派。这个学派集宗教、科学和哲学于一体,该学派人数固定,知识保密,所有发明创造都归于学派领袖。他创立的毕达哥拉斯学派,曾在多个数学领域作出了重要贡献。在对几何量进行研究时,得出结论:任何两条线段都是可通约的,或者说是可以公度的。也就是说两条线段长的比是整数或是一个分数,即为有理数。之后,其学派中一个叫希帕索斯(约公元前470)的成员考虑了这样一个问题:正方形的对角线与边长这两条线段是不是可公度的呢?经过认真考虑,希帕索斯意外的发现:正方形的边和对角线是不可公度的!即:边长为1的正方形其对角线长度既不能用整数,也不能用分数表示。它不是一个有理数,而是一个当时人们完全不了解的全新的数。就是后来的无理数。希帕索斯的发现导致了数学史上第一个无理数的诞生。但在当时,这一发现却与毕达哥拉斯学派的数学观点不符,这一悖论动摇了其学派的数学与哲学根基,并且由于它与人们的经验、直觉也完全相悖,因此在当时数学界掀起一场极大风暴,最终导致了西方数学史上一场大的风波,史称“第一次数学危机”。希帕索斯也因此被推入河里淹死。此次危机产生后,很长一段时间人们都不把无理数当作真正的数。直到19实际中叶,无理数的本质才被测试搞清楚。然而我们可以看到希帕索斯的发现,促使人们进一步去认识和理解无理数。但是,基于生产和科学技术的发展水平,毕达哥拉斯学派及以后的古希腊的数学家们没有也不可能建立严格的无理数理论,他们对无理数的问题基本上采取了回避的态度,放弃对数的算术处理,代之一几何处理,从而开始了几何优先发展的时期,在此后两千年间,希腊的几何学几乎成了全部数学的基础。希帕索斯的发现,同时也说明直觉和经验不一定靠得住,而推理和证明才是可靠的,这就导致了亚里士多德的逻辑体系和欧几里德几何体系的建立。以上只是数学悖论中的一个典型案例,同样数学发展的漫漫长河中往后还相继有了第二、第三次数学危机,而且第三次数学危机至今还未解决。通过对“趣味数学”课程的学习,我提高了自己对于数学的兴趣,同时也教育了我在平时应该多思多想,坚持自己的理想、坚持自己的信念。天才的思想往往是超前的,在我们这些凡夫俗子眼中,的确很难理解他们。但就是在这样的环境下,他们依然默默的坚守着自己的信念,执著着自己的理想。数学家们那种锲而不舍的精神是我们应该努力学习的,正是有了那种精神,他们才能坚守在自己的阵地上直到自己生命的最后一刻,这也许就是他们所认为的幸福。同样,学习数学需要想象力,当面临错综复杂的实际问题时,应能自觉运用数学的思维方式,退到简单入手去观察和思考问题,并努力、小心求证去寻找递推关系以寻求用数学解决问题的办法。这种思考方式不仅在解题中非常重要在生活中更不可或缺!悖论像魔术,变戏法,它既是生动的、有趣的、迷人的,是数学的一个重要部分又是难以应付的对手。同样,悖论也是重要的,历史上众多数学知识的进展都源于对悖论的研究。悖论给人以奇异的美感,它在“荒诞”中蕴涵着哲理,给人以启迪,并带给人特别的趣味与享受。悖论是思维的艺术体操,在生活中处处闪耀着亮光!以上是我在学习“趣味数学”课程后的总结,在学习过程中,我体会到数学的发展并非一帆风顺,它是众多数学先贤前赴后继、辛勤耕耘的奋斗过程,也是克服困难、战胜危机的斗争过程。数学也不是靠老师教会的,而是在老师的引导下,靠自己主动的思维活动去获取的。学习数学就要积极主动地参与学习过程,养成实事求是的科学态度,独立思考、勇于探索的创新精神;正确对待学习中的困难和挫折,败不馁,胜不骄,养成积极进取,不屈不挠,耐挫折的优良心理品质,日积月累,定有可观的进步。同时我也感受到了数学的趣味性,这对于我们把握数学知识之间的关系和联系有十分重要的意义,同时也让我感受到数学并非是空洞、乏味的,它存在于我们日常生活的各个角落。我们在日常生活也会遇到各种数学的或悖论的的问题,这同样会让我们更好的解决我们所遇到的问题。