追风居士
大数据技术在金融行业中的典型应用近年来,我国金融科技快速发展,在多个领域已经走在世界前列。大数据、人工智能、云计算、移动互联网等技术与金融业务深度融合,大大推动了我国金融业转型升级,助力金融更好地服务实体经济,有效促进了金融业整体发展。在这一发展过程中,又以大数据技术发展最为成熟、应用最为广泛。从发展特点和趋势来看,“金融云”快速建设落地奠定了金融大数据的应用基础,金融数据与其他跨领域数据的融合应用不断强化,人工智能正在成为金融大数据应用的新方向,金融行业数据的整合、共享和开放正在成为趋势,给金融行业带来了新的发展机遇和巨大的发展动力。大数据在金融行业的典型应用场景大数据涉及的行业过于广泛,除金融外,还包括政治、教育、传媒、医学、商业、工农业、互联网等多个方面,各行业对大数据的定义目前尚未统一。大数据的特点可归纳为“4V”。第一,数据体量大(Volume),海量性也许是与大数据最相关的特征。第二,数据类型繁多(Variety),大数据既包括以事务为代表的传统结构化数据,还包括以网页为代表的半结构化数据和以视频、语音信息为代表的非结构化数据。第三,价值密度低(Value),大数据的体量巨大,但数据中的价值密度却很低。比如几个小时甚至几天的监控视频中,有价值的线索或许只有几秒钟。第四,处理速度快(Velocity),大数据要求快速处理,时效性强,要进行实时或准实时的处理。金融行业一直较为重视大数据技术的发展。相比常规商业分析手段,大数据可以使业务决策具有前瞻性,让企业战略的制定过程更加理性化,实现生产资源优化分配,依据市场变化迅速调整业务策略,提高用户体验以及资金周转率,降低库存积压的风险,从而获取更高的利润。当前,大数据在金融行业典型的应用场景有以下几个方面:在银行业的应用主要表现在两个方面:一是信贷风险评估。以往银行对企业客户的违约风险评估多基于过往的信贷数据和交易数据等静态数据,内外部数据资源整合后的大数据可提供前瞻性预测。二是供应链金融。利用大数据技术,银行可以根据企业之间的投资、控股、借贷、担保及股东和法人之间的关系,形成企业之间的关系图谱,利于企业分析及风险控制。在证券行业的应用主要表现为:一是股市行情预测。大数据可以有效拓宽证券企业量化投资数据维度,帮助企业更精准地了解市场行情,通过构建更多元的量化因子,投研模型会更加完善。二是股价预测。大数据技术通过收集并分析社交网络如微博、朋友圈、专业论坛等渠道上的结构化和非结构化数据,形成市场主观判断因素和投资者情绪打分,从而量化股价中人为因素的变化预期。三是智能投资顾问。智能投资顾问业务提供线上投资顾问服务,其基于客户的风险偏好、交易行为等个性化数据,依靠大数据量化模型,为客户提供低门槛、低费率的个性化财富管理方案。在互联网金融行业的应用,一是精准营销。大数据通过用户多维度画像,对客户偏好进行分类筛选,从而达到精准营销的目的。二是消费信贷。基于大数据的自动评分模型、自动审批系统和催收系统可降低消费信贷业务违约风险。金融大数据的典型案例分析为实时接收电子渠道交易数据,整合银行内系统业务数据。中国交通银行通过规则欲实现快速建模、实时告警与在线智能监控报表等功能,以达到实时接收官网业务数据,整合客户信息、设备画像、位置信息、官网交易日志、浏览记录等数据的目的。该系统通过为交通银行卡中心构建反作弊模型、实时计算、实时决策系统,帮助拥有海量历史数据,日均增长超过两千万条日志流水的银行卡中心,形成电子渠道实时反欺诈交易监控能力。利用分布式实时数据采集技术和实时决策引擎,帮助信用卡中心高效整合多系统业务数据,处理海量高并发线上行为数据,识别恶意用户和欺诈行为,并实时预警和处置;通过引入机器学习框架,对少量数据进行分析、挖掘构建并周期性更新反欺诈规则和反欺诈模型。系统上线后,该银行迅速监控电子渠道产生的虚假账号、伪装账号、异常登录、频繁登录等新型风险和欺诈行为;系统稳定运行,日均处理逾两千万条日志流水、实时识别出近万笔风险行为并进行预警。数据接入、计算报警、案件调查的整体处理时间从数小时降低至秒级,监测时效提升近3000倍,上线3个月已帮助卡中心挽回数百万元的风险损失。百度的搜索技术正在全面注入百度金融。百度金融使用的梯度增强决策树算法可以分析大数据高维特点,在知识分析、汇总、聚合、提炼等多个方面有其独到之处,其深度学习能力利用数据挖掘算法能够较好地解决大数据价值密度低等问题。百度“磐石”系统基于每日100亿次搜索行为,通过200多个维度为6亿账号精确画像,高效划分人群,能够为银行、互联网金融机构提供身份识别、反欺诈、信息检验、信用分级等服务。该系统累计为百度内部信贷业务拦截数十万欺诈用户,拦截数十亿不良资产、减少数百万人力成本,累计合作近500家社会金融机构,帮助其提升了整体风险防控水平。金融大数据应用面临的挑战及对策大数据技术为金融行业带来了裂变式的创新活力,其应用潜力有目共睹,但在数据应用管理、业务场景融合、标准统一、顶层设计等方面存在的瓶颈也有待突破。一是数据资产管理水平仍待提高。主要体现在数据质量不高、获取方式单一、数据系统分散等方面。二是应用技术和业务探索仍需突破。主要体现在金融机构原有的数据系统架构相对复杂,涉及的系统平台和供应商较多,实现大数据应用的技术改造难度很大。同时,金融行业的大数据分析应用模型仍处于起步阶段,成熟案例和解决方案仍相对较少,需要投入大量的时间和成本进行调研和试错。系统误判率相对较高。三是行业标准和安全规范仍待完善。金融大数据缺乏统一的存储管理标准和互通共享平台,对个人隐私的保护上还未形成可信的安全机制。四是顶层设计和扶持政策还需强化。体现在金融机构间的数据壁垒较为明显,各自为战问题突出,缺乏有效的整合协同。同时,行业应用缺乏整体性规划,分散、临时、应激等特点突出,信息价值开发仍有较大潜力。以上问题,一方面需要国家出台促进金融大数据发展的产业规划和扶持政策,同时,也需要行业分阶段推动金融数据开放、共享和统一平台建设,强化行业标准和安全规范。只有这样,大数据技术才能在金融行业中稳步应用发展,不断推动金融行业的发展提升。 
每个学历阶段都有不同的毕业论文字数要求,对于一般情况下,大专毕业生论文字数要求是最低的,一般要求在8000左右,本科毕业生论文字数要求较严格,一般要求在8000到15000之间,硕士生毕业生论文要求在20000到50000之间,博士生毕业论文由于高度的专业性,论文字数要求是最严格的,一般在50000字左右。不同的学校对于本科毕业论文的字数要求不同,一般非211、985学校的本科毕业论文字数在6000字——8000字左右,一些要求较高的专业或者重点院校则要求论文字数高达10000字左右或者以上。大多高校对毕业论文的要求,不同的高校对毕业论文的要求存在偏差,毕业论文要通过论文查重,单单满足毕业论文字数要求是不够,论文格式也是要正确的。除了字数要求之外,论文重复率也是重中之重,如果论文的字数符合学校的要求标准,但是内容基本上是全文抄袭的,那这篇论文也没有什么实质性的意义,也无法通过学校要求的重复率标准。对于普通的大学论文重复率一般需要控制在30%以上,而硕士论文的重复率需要控制到20%以下,博士论文的重复率要求10%,有的要求严格的高校,对论文重复率还要降低5%个点才能达标。
天云在金融行业深更多年,主要的应用场景分为以下几类。1,大数据,小分析:给予天云大数据平台的数据仓库项目,简单来说就是做多维分析,通过构建cube来对数据进行分析。2,大数据,大分析:全量数据进行数据挖掘与机器学习,打破人固有思维模式,进行业务创新。3,查询分析:典型的NOSQL数据库适用场景,例如历史数据查询,银行冠字号码查询等。4,流式分析:事件驱动架构,对银行中的大额变动提醒,vip人员及时关注应用比较多。
搜集相关资料,尽可能的丰富你的观点,一般文科类的毕业本科论文在1W字左右 ,理科的少一些。1 题目 题目应简短、明确、有概括性,并能恰当、准确的反映本论文的研究内容。题目不超过25个字,除非确有必要,一般不设副标题。2摘要与关键词 1 摘要摘要是论文内容的简要陈述,是一篇具有独立性和完整性的短文。摘要应包括论文的创新见解、主要论点及理论与实际意义。摘要中不宜使用公式、图表、不标注引用文献编号。避免将摘要写成目录式的内容介绍。2 关键词关键词是供检索用的主题词条,应采用能覆盖论文主要内容的通用词条。关键词一般列3—5个,按词条的外延层次排列(外延大的排在前面)。 3 正文正文包括绪论、正文主体与结论等部分。
大数据(Big Data)又称为巨量资料,指需要新处理模式才能具有更强的决策力、洞察力和流程优化能力的海量、高增长率和多样化的信息资产。“大数据”概念最早由维克托·迈尔·舍恩伯格和肯尼斯·库克耶在编写《大数据时代》中提出,指不用随机分析法(抽样调查)的捷径,而是采用所有数据进行分析处理。大数据有4V特点,即Volume(大量)、Velocity(高速)、Variety(多样)、Value(价值)。
学术堂整理了十五个和大数据有关的毕业论文题目,供大家进行参考: 1、大数据对商业模式影响 2、大数据下地质项目资金内部控制风险 3、医院统计工作模式在大数据时代背景下改进 4、大数据时代下线上餐饮变革 5、基于大数据小微金融 6、大数据时代下对财务管理带来机遇和挑战 7、大数据背景下银行外汇业务管理分析 8、大数据在互联网金融领域应用 9、大数据背景下企业财务管理面临问题解决措施 10、大数据公司内部控制构建问题 11、大数据征信机构运作模式监管 12、基于大数据视角下我国医院财务管理分析 13、大数据背景下宏观经济对微观企业行为影响 14、大数据时代建筑企业绩效考核和评价体系 15、大数据助力普惠金融
字数要求本科论文字数一般在5000字以上即可,一般6000-8000字比较合适,过长或者过短都是不合适的,本科论文一般不会有什么特别高的要求,发表普刊就可以,有些甚至不要求见刊,因此本科毕业论文的字数无需太多,只要做到结构完整,思路清晰,再加上一定程度的创新,一般都可以通过考核的。 拓展阅读:查重本科毕业论文查重率一共是分成四个等级。在其中A级的标淮是:毕业论文的重复率在10%之内。这种毕业论文是能够立即通过。而且还能够作为优秀论文的参考范围。B级的标淮是:重复率在10%至20%,这种毕业论文能够通过,与此同时也可以作为优秀论文选拔范围。 C级的标淮是:20%至50%之内,这种毕业论文是不予通过的,因为其重复率过高,存有大量抄袭的文字,大学生们必须要进行修改和再次检测。D级的标淮是:论文查重率在50%以上,这种毕业论文几乎就是抄袭的代名词。只有实现A,B两个等级的标淮才能够参加论文答辩。
回答
内容如下:1、大数据对商业模式影响2、大数据下地质项目资金内部控制风险3、医院统计工作模式在大数据时代背景下改进4、大数据时代下线上餐饮变革5、基于大数据小微金融
[鲜花][鲜花]
本科毕业论文字数5000-15000字之间,硕士毕业论文字数20000-50000字之间,博士毕业论文字数50000-150000字之间含博士后。毕业论文写作技巧第一条,先要围绕着论题去占有和选择材料。也就是说,当你的论题已经确定以后,第一,围绕着立论去占有材料,多多益善的去看。有的论题是来自老师已经拟订好的题目。有相当一部分学生是自己确立论题的,先积累材料,再有论点。一旦立论确立了以后,再回过头来去占有材料。在占有材料方面跟我《基础写作》里讲的有相通的地方。第一要占有材料,占有研究对象的真实的材料。比如你要研究某个作家,某个阶段的几部作品,就将这几部作品拿来进行深入细致的研读,进一步来确定自己的论点。如果你的论文是报告类的,不是纯理论性的,用实验报告、调查报告、总结的形式来写论文的,那么你的调查材料、实验材料也要占有。第二,要对研究对象的外延材料占有。比如你要研究的是作家作品的话,那么你就要对作家写作的背景材料,包括政治经济背景、文艺思潮背景等。还有作家谈自己创作的材料,还有他人已经研究过的材料等。有了这些材料,你就可以做到知人论世,可以使自己在研究当中尽量公允,不带偏见。所以,充分占有材料,也就使你的论据更充分。这样你将来的论证就会更加深广。第三,在有材料的基础上要选择材料。决不能只要有材料就统统拉进来。这是你们写论文常出现的问题。比如让你写一万字,你可能写到五六万字。象刚才那个学生一样,写出六万字,太丰富了。把握不住自己的时候,可以让老师来帮助你,告诉你哪些能用,哪些不能用。多占有材料总比没有材料写不出来要好,因为删总是好删的。在材料多的情况下,你就选更好的材料。
客户画像应用。客户画像应用主要分为个人客户画像和企业客户画像。个人客户画像包括人口统计学特征、消费能力数据、兴趣数据、风险偏好等;企业客户画像包括企业的生产、流通、运营、财务、销售和客户数据、相关产业链上下游等数据。