期刊问答网 论文发表 期刊发表 期刊问答

浅谈宋元时期数学发展论文摘要

  • 回答数

    4

  • 浏览数

    204

yangcunrui
首页 > 期刊问答网 > 期刊问答 > 浅谈宋元时期数学发展论文摘要

4个回答 默认排序1
  • 默认排序
  • 按时间排序

转交向日葵

已采纳
北宋王朝统一了中国,农业、手工业、商业迅速繁荣,科学技术突飞猛进。从公元十一世纪到十四世纪〔宋、元两代〕,筹算数学达到极盛,是中国古代数学空前繁荣,硕果累累的全盛时期。这一时期出现了一批著名的数学家和数学著作,列举如下:贾宪的《黄帝九章算法细草》〔11世纪中叶〕,刘益的《议古根源》〔12世纪中叶〕,秦九韶的《数书九章》〔1247〕,李冶的《测圆海镜》〔1248〕和《益古演段》〔1259〕,杨辉的《详解九章算法》〔1261〕、《日用算法》〔1262〕和《杨辉算法》〔1274-1275〕,朱世杰的《算学启蒙》〔1299〕和《四元玉鉴》〔1303〕等等。 宋元数学在很多领域都达到了中国古代数学,也是当时世界数学的巅峰。其中主要的工作有:公元1050年左右,北宋贾宪(生卒年代不详)在《黄帝九章算法细草》中创造了开任意高次幂的“增乘开方法”,公元1819年英国人霍纳(william george horner)才得出同样的方法。贾宪还列出了二项式定理系数表,欧洲到十七世纪才出现类似的“巴斯加三角”。(《黄帝九章算法细草》已佚)公元1088—1095年间,北宋沈括从“酒家积罂”数与“层坛”体积等生产实践问题提出了“隙积术”,开始对高阶等差级数的求和进行研究,并创立了正确的求和公式。沈括还提出“会圆术”,得出了我国古代数学史上第一个求弧长的近似公式。他还运用运筹思想分析和研究了后勤供粮与运兵进退的关系等问题。公元1247年,南宋秦九韶在《数书九章》中推广了增乘开方法,叙述了高次方程的数值解法,他列举了二十多个来自实践的高次方程的解法,最高为十次方程。欧洲到十六世纪意大利人菲尔洛(scipio del ferro)才提出三次方程的解法。秦九韶还系统地研究了一次同余式理论。公元1248年,李冶(李治,公元1192一1279年)著的《测圆海镜》是第一部系统论述“天元术”(一元高次方程)的著作,这在数学史上是一项杰出的成果。在《测圆海镜?序》中,李冶批判了轻视科学实践,以数学为“九九贱技”、“玩物丧志”等谬论。公元1261年,南宋杨辉(生卒年代不详)在《详解九章算法》中用“垛积术”求出几类高阶等差级数之和。公元1274年他在《乘除通变本末》中还叙述了“九归捷法”,介绍了筹算乘除的各种运算法。公元1280年,元代王恂、郭守敬等制订《授时历》时,列出了三次差的内插公式。郭守敬还运用几何方法求出相当于现在球面三角的两个公式。公元1303年,元代朱世杰(生卒年代不详)著《四元玉鉴》,他把“天元术”推广为“四元术”(四元高次联立方程),并提出消元的解法,欧洲到公元1775年法国人别朱(etienne bezout)才提出同样的解法。朱世杰还对各有限项级数求和问题进行了研究,在此基础上得出了高次差的内插公式,欧洲到公元1670年英国人格里高利(james gregory)和公元1676一1678年间牛顿(issac newton)才提出内插法的一般公式。公元十四世纪我国人民已使用珠算盘。在现代计算机出现之前,珠算盘是世界上简便而有效的计算工具。

浅谈宋元时期数学发展论文摘要

167 评论(14)

qylucky

我发给你,开学时我们写过
262 评论(13)

osirislu

浅谈中国古代数学作为一个炎黄子孙,龙的传人,我们可以很骄傲的说我们的祖先有很多优秀的,好的东西留给了我们同时也留给了世界,四大发明,影响着整个世界,改变了整个世界。另外就是今天我们要说的数学,中国古人对数学的研究以及对世界作出的贡献。 在中国明代中叶以前我国的数学一直处于世界的领先地位,这是我们的骄傲,我国古代的许多数学家曾经写下了不少著名的数学著作。许多具有世界意义的成就正是因为有了这些古算书而得以流传下来。这些中国古代数学名著是了解古代数学成就的丰富宝库。比如,现在所知道的最早的数学著作《周髀算经》和《九章算术》,它们都是公元纪元前后的作品,到现在已有两千年左右的历史了。能够使两千年前的数学书籍流传到现在,这本身就是一项了不起的成就。最早由于没有印刷术的出现,我们的古人都是用手抄写的方式,把这些数学知识传给下一代的,古代的数学家给已有的算数作出自己的注解,同时提出自己的心得 观点和看法。 大家最熟悉的数学著作就是《九章算术》了,《九章算术》不仅在中国数学史上占有重要地位,它的影响还远及国外。在欧洲中世纪,《九章算术》中的某些算法,例如分数和比例,就有可能先传入印度再经阿拉伯传入欧洲。再如“盈不足” (也可以算是一种一次内插法),在阿拉伯和欧洲早期的数学著作中,就被称作“中国算法”。现在,作为一部世界科学名著,《九章算术》已经被译成许多种文字出版。然而,直到今天我们都不知道这本著作的具体作者是谁,只知道西汉早期的著名数学家张苍(前201—前152)、耿寿昌等人都曾经对它进行过增订删补。《汉书?艺文志》中没有《九章算术》的书名,但是有许商、杜忠二人所著的《算术》,因此有人推断其中或者也含有许、杜二人的工作。1984年,湖北江陵张家山西汉早期古墓出土《算数书》书简,67 推算成书当比《九章算术》早一个半世纪以上,内容和《九章算术》极相类似,有些算题和《九章算术》算题文句也基本相同,可见两书有某些继承关系。可以说《九章算术》是在长时期里经过多次修改逐渐形成的,虽然其中的某些算法可能早在西汉之前就已经有了。正如书名所反映的,全书共分九章,一共搜集了二百四十六个数学问题,连同每个问题的解法,分为九大类,每类算是一章。同时,《九章算术》在数学上还有其独到的成就,不仅最早提到分数问题,也首先记录了盈不足等问题,“方程”章还在世界数学史上首次阐述了负数及其加减运算法则。它是一本综合性的历史著作,是当时世界上最先进的应用数学,它的出现标志中国古代数学形成了完整的体系。然而,《九章算术》亦有其不容忽视的缺点:没有任何数学概念的定义,也没有给出任何推导和证明。直到我国古代的数学家刘徽给《九章算术》作注,才大大弥补了这个缺陷。刘徽可是咱们山东邹平人哟,刘徽定义了若干数学概念,全面论证了《九章算术》的公式解法,提出了许多重要的思想、方法和命题,他在数学理论方面成绩斐然。《海岛算经》,就是刘徽所著,这部书中讲述的都是利用标杆进行两次、三次、最复杂的是四次测量来解决各种测量数学的问题。这些测量数学,正是中国古代非常先进的地图学的数学基础。此外,刘徽对《九章算术》所作的注释工作也是很有名的。一般地说,可以把这些注释看成是《九章算术》中若干算法的数学证明。刘徽注中的“割圆术”开创了中国古代圆周率计算方面的重要方法,他还首次把极限概念应用于解决数学问题。中国古代数学,经过从汉到唐一千多年间的发展,已经形成了更加完备的体系。在这基础上,到了宋元时期(公元十世纪到十四世纪)又有了新的发展。宋元数学,从它的发展速度之快、数学著作出现之多和取得成就之高来看,都可以说是中国古代数学史上最光辉的一页。 特别是公元十三世纪下半叶,在短短几十年的时间里,出现了秦九韶(1202—1261)、李冶(1192—1279)、杨辉、朱世杰四位著名的数学家。所谓宋元算书就指的是一直流传到现在的这四大家的数学著作,包括: 秦九韶著的《数书九章》(公元1247年); 李冶的《测圆海镜》(公元1248年)和《益古演段》(公元1259年); 杨辉的《详解九章算法》(公元1261年)、《日用算法》(公元1262年)、《杨辉算法》(公元1274—1275年); 朱世杰的《算学启蒙》(公元1299年)和《四元玉鉴》(公元1303年)。另外,大家都知道《算经十书》,它是指汉、唐一千多年间的十部著名数学著作,它们曾经是隋唐时候国子监算学科(国家所设学校的数学科)的教科书。十部算书的名字是:《周髀算经》、《九章算术》、《海岛算经》、《五曹算经》、《孙子算经》、《夏侯阳算经》、《张丘建算经》、《五经算术》、《缉古算经》、《缀术》。 这十部算书,以《周髀算经》为最早,不知道它的作者是谁,据考证,它成书的年代当不晚于西汉后期(公元前一世纪)。《周髀算经》不仅是数学著作,更确切地说,它是讲述当时的一派天文学学说——“盖天说”的天文著作。就其中的数学内容来说,书中记载了用勾股定理来进行的天文计算,还有比较复杂的分数计算。当然不能说这两项算法都是到公元前一世纪才为人们所掌握,它仅仅说明在现在已经知道的资料中,《周髀算经》是比较早的记载。另外,还有就是在出现计算器前,我们使用的算盘,对,就是珠算。说道珠算,我们还有必要提一下筹算。筹算在我国古代用了大约两千年,在生产和科学技术以至人民生活中,发挥了重大的作用。但是它的缺点也是十分明显的:首先,在室外拿着一大把算筹进行计算就很不方便;其次,计算数字的位数越多,所需要的面积越大,受环境和条件的限制;此外,当计算速度加快的时候,很容易由于算筹摆弄不正而造成错误。随着社会的发展,计算技术要求越来越高,筹算需要改革,这是势在必行的。这个改革从中唐以后的商业实用算术开始,经宋元出现大量的计算歌诀,到元末明初珠算的普遍应用,历时七百多年。《新唐书》和《宋史•艺文志》记载了这个时期出现的大量著作。由于封建统治阶级对民间数学十分轻视,以致这些著作的绝大部分已经失传。从遗留下来的著作中可以看出,筹算的改革是从筹算的简化开始而不是从工具改革开始的,这个改革最后导致珠算的出现。珠算是由筹算演变而来的,这是十分清楚的。筹算数字中,上面一根筹当五,下面一根筹当一,珠算盘中的上一珠也是当五,下一珠也是当一;由于筹算在乘、除法中出现某位数字等于十或多于十的情形(例如26532÷8,第一步就是“八二下加四”,就变成),所以珠算盘采用上二珠下五珠的形式。其次,我们可以证明,从杨辉、朱世杰开始到元末丁巨、何平子、贾亨止起除“起一”法外的全部现今通用的珠算歌诀,是为筹算而设的。 杨辉的《乘除通变本末》(公元1274年)和朱世杰的《算学启蒙》(公元1299年)已经有相当完备的歌诀,但是杨辉在《乘除通变本末》中说:“下算不出‘横’‘直’”,其中“横”“直”显然是指算筹的纵横排列,朱世杰在《算学启蒙》中提到“知算纵横数目真”,也是这个意思。《丁巨算法》(公元1355年)、何平子的《详明算法》(公元1373年)、贾亨的《算法全能》(约公元1373年)也有相当完备的归除歌诀,但是都没有提到珠算,而《详明算法》还有许多筹算算草。歌诀出现后,筹算原来存在的缺点就更突出了,歌诀的快捷和摆弄算筹的迟缓存在矛盾。为了得心应手,劳动人民便创造出更加先进的计算工具——珠算盘。 现存文献中最早提到珠算盘的是明初的《对相四言》。明代中期公元十五世纪中叶《鲁班木经》中有制造珠算盘的规格:“算盘式:一尺二寸长,四寸二分大。框六分厚,九分大,……线上二子,一一寸一分;线下五子,三寸一分。长短大小,看子而做。”把上二子和下五子隔开的不是木制的横梁,而是一条线。比较详细地说明珠算用法的现存著作有徐心鲁的《盘珠算法》(公元1573年)、柯尚_迁的《数学通轨》(公元1578年)、朱载堉(1536—1611)的《算学新说》(公元1584年)、程大位的《直指算法统宗》(公元1592年)等,以程大位的著作流传最广。 值得指出的是,在元代中叶和元末的文学、戏剧作品中有提到珠算的。例如元世祖至元十六年(公元1279年)刘因在他的《静修先生文集》中有一首关于算盘的五言绝诗;陶宗仪在他的《辍耕录》中把婢仆贬作算盘珠,要拨才动;《元曲选》“庞居上误放来生债”提到“去那算盘里拨了我的岁数”,等等。文学、戏剧中用算盘珠作比喻,说明珠算盘已经比较流行,也说明它是比较时新的东西。因此可以认为,珠算出现在元代中叶,元末明初已经普遍应用了。 有的外国学者认为我国的珠算出现在汉代,他们的根据是汉徐岳著、北周甄蛮注的《数术记遗》已经明确提到珠算。我国数学家、数学史家钱宝琮(1892—1974)曾经考证过,《数术记遗》是甄鸾依托伪造而自己注释的书。在北周时,乘、除运算都在上、中、下三层进行,又没有简化乘、除法的歌诀,因此甄鸾注释的珠算,充其量不过是一种记数工具或者只能作加减法的简单算盘,和后来出现的珠算是完全不同的。 珠算还传到朝鲜、日本等国,对这些国家的计算技术的发展曾经起过一定的作用。日本人在十七世纪中叶,在中国算盘的基础上,改成梁上一珠、珠作棱形的日本算盘有次可以看出,我们的祖先不仅在数学领域对世界作出了贡献,同时也把算盘这种便于计算的工具推向了世界。希望我们现在的一代还可以继承祖先的优良传统,在世界的数学之林再次贡献自己的知识,力量,让世界重新认识我们中国。
162 评论(14)

bxlia

中国数学发展史 宋元数学 中国古代数学在宋元时期达到繁荣的顶点,涌现了一大批卓有成就的数学家。其中秦九韶、李冶、杨辉和朱世杰成就最为突出,被誉为“宋元数学四大家”。 秦九韶(公元1202-1261),字道古,安岳人。其父秦季栖,进士出身,官至上部郎中、秘书少监。 秦九韶聪敏勤学。宋绍定四年(1231),秦九韶考中进士,先后担任县尉、通判、参议官、州守、同农、寺丞等职。先后在湖北、安徽、江苏、浙江等地做官,1261年左右被贬至梅州(今广东梅县),不久死于任所。他在政务之余,对数学进行虔心钻研,并广泛搜集历学、数学、星象、音律、营造等资料,进行分析、研究。 宋淳祜四至七年(1244至1247),他在为母亲守孝时,把长期积累的数学知识和研究所得加以编辑,写成了闻名的巨著《数学九章》,并创造了“大衍求一术”。这 不仅在当时处于世界领先地位,在近代数学和现代电子计算设计中,也起到了重要作用,被称为“中国剩余定理”。他所论的“正负开方术”,被称为“秦九韶程序”。现在,世界各国从小学、中学到大学的数学课程,几乎都接触到他的定理、定律和解题原则。秦九韶在数学方面的研究成果,比英国数学家取得的成果要早800多年。 李冶(1192-1279)是中国古代数学家,字仁卿,号敬斋,真定府栾城县(今河北省栾城县)人。 1234年初,金朝终于为蒙古所灭.金朝的灭亡给李冶生活带来不幸,但由于他不再为官,这在客观上使他的科学研究有了充分的时间.他在桐川的研究工作是多方面的,包括数学、文学、历史、天文、哲学、医学.其中最有价值的工作是对天元术进行了全面总结,写成数学史上的不朽名著----《测圆海镜》。 杨辉,中国南宋时期杰出的数学家和数学教育家。在13世纪中叶活动于苏杭一带,其著作甚多。 他著名的数学书共五种二十一卷。著有《详解九章算法》十二卷(1261年)、《日用算法》二卷(1262年)、《乘除通变本末》三卷(1274年)、《田亩比类乘除算法》二卷(1275年)、《续古摘奇算法》二卷(1275年)。 杨辉的数学研究与教育工作的重点是在计算技术方面,他对筹算乘除捷算法进行总结和发展,有的还编成了歌决,如九归口决。 他在《续古摘奇算法》中介绍了各种形式的"纵横图"及有关的构造方法,同时"垛积术"是杨辉继沈括"隙积术"后,关于高阶等差级数的研究。杨辉在"纂类"中,将《九章算术》246个题目按解题方法由浅入深的顺序,重新分为乘除、分率、合率、互换、二衰分,勾股等九类。 他非常重视数学教育的普及和发展,在《算法通变本末》中,杨辉为初学者制订的"习算纲目"是中国数学教育史上的重要文献。 朱世杰(1300前后),字汉卿,号松庭,寓居燕山(今北京附近),“以数学名家周游湖海二十余年”,“踵门而学者云集”。朱世杰数学代表作有《算学启蒙》(1299)和《四元玉鉴》(1303)。《算学启蒙》是一部通俗数学名著,曾流传海外,影响了朝鲜、日本数学的发展。《四元玉鉴》则是中国宋元数学高峰的又一个标志,其中最杰出的数学创作有“四元术”(多元高次方程列式与消元解法)、“垛积法”(高阶等差数列求和)与“招差术”(高次内插法)。 中国元代数学家,对多元高次方程组解法、高阶等差级数求和,高次内插法都有深入研究,他著有《算学启蒙》(1299年)、《四元玉鉴》(1303年)各3卷,在后者中讨论了多达四元的高次联立方程组解法,联系在一起的多项式的表达和运算以及消去法,已接近近世代数学,处于世界领先地位,他通晓高次招差法公式,比西方早四百年,中外数学史家都高度评价朱世杰和他的名著《四元玉鉴》。 宋元数学,从时间上说它包括由北宋到元末大约四百年的时间。在此期间,涌现了许多优秀的数学家,其中最卓越的代表,如通常所说的“宋元四大家”的杨辉、秦九韶、李冶、朱世杰等,在数学史占有重要的地位。同时期的欧洲正处在中世纪,中国数学家的光辉灿烂成就,在部分问题的解决上,远远走在世界前列。   宋元数学是在汉唐数学的基础上发展起来的,不仅贾宪、杨辉、秦九韶的数学著作都称为“九章”,前二者甚至就是《九章》的问题编集,而且更多的数学问题都来源于《九章》,如李冶、郭守敬等人的成果。由于雕版印刷术的发达,北宋王朝在元丰七年由官方的“秘书省”刊到了《九章算术》等汉唐以来的十部算经,作为学校的课本[1]。《算经十书》作为教科书被印刷出来,对宋元数学教育以至数学研究方面所产生的影响是不言而喻的。 有名的数学家及其著作 张丘建--<张丘建算经> 《张丘建算经》三卷,据钱宝琮考,约成书于公元466~485年间张丘建,北魏时清河(今山东临清一带)人,生平不详。最小公倍数的应用、等差数列各元素互求以及“百鸡术”等是其主要成就。“百鸡术”是世界著名的不定方程问题。13世纪意大利斐波那契《算经》、15世纪阿拉伯阿尔·卡西<<算术之钥》等著作中均出现有相同的问题。 贾宪:〈〈黄帝九章算经细草〉〉 中国古典数学家在宋元时期达到了高峰,这一发展的序幕是“贾宪三角”(二项展开系数表)的发现及与之密切相关的高次开方法(“增乘开方法”)的创立。贾宪,北宋人,约于1050年左右完成〈〈黄帝九章算经细草〉〉,原书佚失,但其主要内容被杨辉(约13世纪中)著作所抄录,因能传世。杨辉〈〈详解九章算法〉〉(1261)载有“开方作法本源”图,注明“贾宪用此术”。这就是著名的“贾宪三角”,或称“杨辉三角”。〈〈详解九章算法〉〉同时录有贾宪进行高次幂开方的“增乘开方法”。 贾宪三角在西方文献中称“帕斯卡三角”,1654年为法国数学家 B·帕斯卡重新发现。 秦九韶:〈〈数书九章〉〉 秦九韶(约1202~1261),字道吉,四川安岳人,先后在湖北、安徽、江苏、浙江等地做官,1261年左右被贬至梅州(今广东梅县),不久死于任所。秦九韶与李冶、杨辉、朱世杰并称宋元数学四大家。他早年在杭州“访习于太史,又尝从隐君子受数学”,1247年写成著名的〈〈数书九章〉〉。〈〈数书九章〉〉全书共18卷,81题,分九大类(大衍、天时、田域、测望、赋役、钱谷、营建、军旅、市易)。其最重要的数学成就——“大衍总数术”(一次同余组解法)与“正负开方术”(高次方程数值解法),使这部宋代算经在中世纪世界数学史上占有突出的地位。 李冶:《测圆海镜》——开元术 随着高次方程数值求解技术的发展,列方程的方法也相应产生,这就是所谓“开元术”。在传世的宋元数学著作中,首先系统阐述开元术的是李冶的《测圆海镜》。 李冶(1192~1279)原名李治,号敬斋,金代真定栾城人,曾任钧州(今河南禹县)知事,1232年钧州被蒙古军所破,遂隐居治学,被元世祖忽必烈聘为翰林学士,仅一年,便辞官回家。1248年撰成《测圆海镜》,其主要目的就是说明用开元术列方程的方法。“开元术”与现代代数中的列方程法相类似,“立天元一为某某”,相当于“设x为某某”,可以说是符号代数的尝试。李冶还有另一部数学著作《益古演段》(1259),也是讲解开元术的。 朱世杰:《四元玉鉴》 朱世杰(1300前后),字汉卿,号松庭,寓居燕山(今北京附近),“以数学名家周游湖海二十余年”,“踵门而学者云集”。朱世杰数学代表作有《算学启蒙》(1299)和《四元玉鉴》(1303)。《算学启蒙》是一部通俗数学名著,曾流传海外,影响了朝鲜、日本数学的发展。《四元玉鉴》则是中国宋元数学高峰的又一个标志,其中最杰出的数学创作有“四元术”(多元高次方程列式与消元解法)、“垛积法”(高阶等差数列求和)与“招差术”(高次内插法) 华罗庚 “数学,如音乐一样,以奇才辈出而著称,这些人即便没有受过正规的教育也才华横溢。虽然华罗庚谦虚地避免使用奇才这个词,但它却恰当地描述了这位杰出的中国数学家。” --G·B·Kolata 华罗庚是一个传奇式的人物,是一个自学成才的数学家。 他1910年11月12日出生于江苏省金坛县一个城市贫民的家庭,1985年6月12日,中国数学届陨灭一颗巨星-华罗庚在日本讲学时不幸因心肌梗塞逝世了。 华罗庚是蜚声中外的数学家。他是中国解析数论、典型群、矩阵几何学、自守与多复便函数等多方面研究的创始人与开拓者。他的著名学术论文《典型域上的多元复变函数论》,由于应用了前人没有用过的方法,在数学领域内做了开拓性的工作,于1957年荣获我国科学一等奖。他研究的成果被国际数学界命名为“华氏定理”,“布劳威尔-加当-华定理”。华罗庚一生精勤不倦,奋斗不息,著作很多,研究领域很广。他共发表学术论文约二百篇,专著有《堆垒素数论》、《高等数学引论》、《指数和的估计及其在数论中的应用》、《典型群》、《多复变数函数论中的典型域的分析》、《数论引导》、《数值积分及其应用》、《从单位圆谈起》、《优选法》、《二阶两个自变数两个未知函数的常系数偏微分方程》、《华罗庚论文选集》等12部。
233 评论(14)

相关问答