nxk293026
论文选题背景可以按照模板来写,包括这三大内容即可:论文研究背景,选题的意义与价值,课题的研究意义与目的。一、论文研究背景论文研究背景的写作主要有以下几个要点:社会大环境如何【可利用国家数据网站发布的数据做支撑】行业环境如何【可以利用行业报告做支撑】目前需要解决的问题【自己论述】二、选题的意义与价值选题的意义与价值写作要点在于论文为何写作本论文,告知写作的原因和意图。也就是论述论文的意义和价值,一般明确下面两个写作要点会使得写作难度降低,如下:理论方面一般有以下几种情况:(1)就哲学的高度而言,需要研究的价值意义(2)就专业或学科角度而言,需要研究的价值意义(3)就某个理论角度而言,需要研究的价值意义实践方面主要包括:(1)就实际的工作实践活动未来发展趋势、前景而言,需要研究的价值意义(2)就实际的现在工作的实践活动而言,需要研究的价值意义(3)就实际的现在工作的实践活动改进而言,需要研究的价值意义三、课题的研究意义与目的确定自己研究的逻辑起点,也就是要讲明在别人研究的基础上自己将要做的探讨是什么?即为什么写这篇论文以及要解决什么问题。 
_new_10708/感觉这个网站应该对你很有帮助进去自己看看吧
什么是数学?这是任何一个数学教育工作者都应认真思考的问题。只有对数学的本质特征有比较清晰的认识,才能在数学教育研究中把握正确的方向 1 数学,其英文是mathematics,这是一个复数名词,“数学曾经是四门学科:算术、几何、天文学和音乐,处于一种比语法、修辞和辩证法这三门学科更高的地位。”自古以来,多数人把数学看成是一种知识体系,是经过严密的逻辑推理而形成的系统化的理论知识总和,它既反映了人们对“现实世界的空间形式和数量关系”的认识,又反映了人们对“可能的量的关系和形式”的认识。数学既可以来自现实世界的直接抽象,也可以来自人类思维的能动创造。 2从人类社会的发展史看,人们对数学本质特征的认识在不断变化和深化。“数学的根源在于普通的常识,最显著的例子是非负整数。"欧几里德的算术来源于普通常识中的非负整数,而且直到19世纪中叶,对于数的科学探索还停留在普通的常识,”另一个例子是几何中的相似性,“在个体发展中几何学甚至先于算术”,其“最早的征兆之一是相似性的知识,”相似性知识被发现得如此之早,“就象是大生的。”因此,19世纪以前,人们普遍认为数学是一门自然科学、经验科学,因为那时的数学与现实之间的联系非常密切,随着数学研究的不断深入,从19世纪中叶以后,数学是一门演绎科学的观点逐渐占据主导地位,这种观点在布尔巴基学派的研究中得到发展,他们认为数学是研究结构的科学,一切数学都建立在代数结构、序结构和拓扑结构这三种母结构之上。与这种观点相对应,从古希腊的柏拉图开始,许多人认为数学是研究模式的学问,数学家怀特海(A N Whiiehead,186----1947)在《数学与善》中说,“数学的本质特征就是:在从模式化的个体作抽象的过程中对模式进行研究,”数学对于理解模式和分析模式之间的关系,是最强有力的技术。”1931年,歌德尔(K,G0de1,1978)不完全性定理的证明,宣告了公理化逻辑演绎系统中存在的缺憾,这样,人们又想到了数学是经验科学的观点,著名数学家冯•诺伊曼就认为,数学兼有演绎科学和经验科学两种特性。 3对于上述关于数学本质特征的看法,我们应当以历史的眼光来分析,实际上,对数本质特征的认识是随数学的发展而发展的。由于数学源于分配物品、计算时间、丈量土地和容积等实践,因而这时的数学对象(作为抽象思维的产物)与客观实在是非常接近的,人们能够很容易地找到数学概念的现实原型,这样,人们自然地认为数学是一种经验科学;随着数学研究的深入,非欧几何、抽象代数和集合论等的产生,特别是现代数学向抽象、多元、高维发展,人们的注意力集中在这些抽象对象上,数学与现实之间的距离越来越远,而且数学证明(作为一种演绎推理)在数学研究中占据了重要地位,因此,出现了认为数学是人类思维的自由创造物,是研究量的关系的科学,是研究抽象结构的理论,是关于模式的学问,等等观点。这些认识,既反映了人们对数学理解的深化,也是人们从不同侧面对数学进行认识的结果。正如有人所说的,“恩格斯的关于数学是研究现实世界的数量关系和空间形式的提法与布尔巴基的结构观点是不矛盾的,前者反映了数学的来源,后者反映了现代数学的水平,现代数学是一座由一系列抽象结构建成的大厦。”而关于数学是研究模式的学问的说法,则是从数学的抽象过程和抽象水平的角度对数学本质特征的阐释,另外,从思想根源上来看,人们之所以把数学看成是演绎科学、研究结构的科学,是基于人类对数学推理的必然性、准确性的那种与生俱来的信念,是对人类自身理性的能力、根源和力量的信心的集中体现,因此人们认为,发展数学理论的这套方法,即从不证自明的公理出发进行演绎推理,是绝对可靠的,也即如果公理是真的,那么由它演绎出来的结论也一定是真的,通过应用这些看起来清晰、正确、完美的逻辑,数学家们得出的结论显然是毋庸置疑的、无可辩驳的。 4事实上,上述对数学本质特征的认识是从数学的来源、存在方式、抽象水平等方面进行的,并且主要是从数学研究的结果来看数学的本质特征的。显然,结果(作为一种理论的演绎体系)并不能反映数学的全貌,组成数学整体的另一个非常重要的方面是数学研究的过程,而且从总体上来说,数学是一个动态的过程,是一个“思维的实验过程”,是数学真理的抽象概括过程。逻辑演绎体系则是这个过程的一种自然结果。在数学研究的过程中,数学对象的丰富、生动且富于变化的一面才得以充分展示。波利亚(G Poliva,1888一1985)认为,“数学有两个侧面,它是欧几里德式的严谨科学,但也是别的什么东西。由欧几里德方法提出来的数学看来象是一门系统的演绎科学,但在创造过程中的数学看来却像是一门实验性的归纳科学。”弗赖登塔尔说,“数学是一种相当特殊的活动,这种观点“是区别于数学作为印在书上和铭,记在脑子里的东西。”他认为,数学家或者数学教科书喜欢把数学表示成“一种组织得很好的状态,”也即“数学的形式”是数学家将数学(活动)内容经过自己的组织(活动)而形成的;但对大多数人来说,他们是把数学当成一种工具,他们不能没有数学是因为他们需要应用数学,这就是,对于大众来说,是要通过数学的形式来学习数学的内容,从而学会相应的(应用数学的)活动。这大概就是弗赖登塔尔所说的“数学是在内容和形式的互相影响之中的一种发现和组织的活动”的含义。菲茨拜因(Efraim Fischbein)说,“数学家的理想是要获得严谨的、条理清楚的、具有逻辑结构的知识实体,这一事实并不排除必须将数学看成是个创造性过程:数学本质上是人类活动,数学是由人类发明的,”数学活动由形式的、算法的与直觉的等三个基本成分之间的相互作用构成。库朗和罗宾逊(Courani Robbins)也说,“数学是人类意志的表达,反映积极的意愿、深思熟虑的推理,以及精美而完善的愿望,它的基本要素是逻辑与直觉、分析与构造、一般性与个别性。虽然不同的传统可能强调不同的侧面,但只有这些对立势力的相互作用,以及为它们的综合所作的奋斗,才构成数学科学的生命、效用与高度的价值。” 5另外,对数学还有一些更加广义的理解。如,有人认为,“数学是一种文化体系”,“数学是一种语言”,数学活动是社会性的,它是在人类文明发展的历史进程中,人类认识自然、适应和改造自然、完善自我与社会的一种高度智慧的结晶。数学对人类的思维方式产生了关键性的影响.也有人认为,数学是一门艺术,“和把数学看作一门学科相比,我几乎更喜欢把它看作一门艺术,因为数学家在理性世界指导下(虽然不是控制下)所表现出的经久的创造性活动,具有和艺术家的,例如画家的活动相似之处,这是真实的而并非臆造的。数学家的严格的演绎推理在这里可以比作专门注技巧。就像一个人若不具备一定量的技能就不能成为画家一样,不具备一定水平的精确推理能力就不能成为数学家,这些品质是最基本的,……,它与其它一些要微妙得多的品质共同构成一个优秀的艺术家或优秀的数学家的素质,其中最主要的一条在两种情况下都是想象力。”“数学是推理的音乐,”而“音乐是形象的数学”.这是从数学研究的过程和数学家应具备的品质来论述数学的本质,还有人把数学看成是一种对待事物的基本态度和方法,一种精神和观念,即数学精神、数学观念和态度。尼斯(Mogens Niss)等在《社会中的数学》一文中认为,数学是一门学科,“在认识论的意义上它是一门科学,目标是要建立、描述和理解某些领域中的对象、现象、关系和机制等。如果这个领域是由我们通常认为的数学实体所构成的,数学就扮演着纯粹科学的角色。在这种情况下,数学以内在的自我发展和自我理解为目标,独立于外部世界,…,另一方面,如果所考虑的领域存在于数学之外,…,数学就起着用科学的作用…•,数学的这两个侧面之间的差异并非数学内容本身的问题,而是人们所关注的焦点不同。无论是纯粹的还是应用的,作为科学的数学有助于产生知识和洞察力。数学也是一个工具、产品以及过程构成的系统,它有助于我们作出与掌握数学以外的实践领域有关的决定和行动…•,数学是美学的一个领域,能为许多醉心其中的人们提供对美感、愉悦和激动的体验…•,作为一门学科,数学的传播和发展都要求它能被新一代的人们所掌握。数学的学习不会同时而自动地进行,需要靠人来传授,所以,数学也是我们社会的教育体系中的一个教学科目.” 从上所述可以看出,人们是从数学内部(又从数学的内容、表现形式及研究过程等几个角度)。数学与社会的关系、数学与其它学科的关系、数学与人的发展的关系等几个方面来讨论数学的性质的。它们都从一个侧面反映了数学的本质特征,为我们全面认识数学的性质提供 不少同学对数学总这有一点畏惧感,对数学好的人有一种敬佩感。自己对数学总有一点信心不足,拿到一个新课本,一翻,十分庆幸,好在数学公式不多,如果拿到一本书,中间数学推导公式多,就十分沮丧,甚至想回避。 大家都不是搞数学专业的,为什么非要讲一讲对数学的再认识、反复强调要学好数学?如何提高数学素养呢?我想,作为一个现代大学生,数学是回避不了的。华罗庚在五十年代就说过:“宇宙之大、粒子之微、光箭之速、生物之迷、日用之繁,无处不用数学”。到了今天这个信息时代,可以说每一项高新技术的背后都有着极其抽象的数学,高新技术本质上就是数学技术。我们想有所作为,要想取得突出的成就,必要的数学知识,较好的数学素养,较高的数学思维是必须的,请注意我这里用了三个不同的定语,要求是逐步升高的。而且你们已不再是中学生,不是爸爸妈妈要送你读书了,你们已进入人生悟性期,自觉的理解意识正在升起,有的同学甚至对科研、创造、创新已跃跃欲试了,这很好。从课堂和书本里学来的只能是知识,是外来信息,人们最终需要开发和建立的是自己的意识和悟性,当然知识也可以促进意识和悟性的迅速提高。在这个人生的春天季节里,我来和你们一起对数学整体性地温习一次,鸟瞰一次,相信对你们是大有好处的。 一、 从数学与其它学科的关系来看数学 就从数学的外部来论说这个问题。 1、 数学是一种语言,是一种科学的共同语言,若没有数学语言,宇宙就是不可描述的,因而也就是永远是无法理解的。任何一门科学只有使用了数学,才成其为一门科学,否则就是不完善与不成熟的。社会在进步,它的数学化程度也正在不断提高,数学语言已成为人类社会中交流和贮存信息的重要手段,宇宙和人类社会就是用数学语言写成的一本大书。 2、 培根(Bacon)说:“数学是打开科学大门的钥匙”。忽视数学必将伤害所有的知识,因为忽视数学的人是无法了解任何其他科学乃至世界上任何其他事物的。几千年来,凡是有意义的科学理论与实践成就,无一例外地借助于数学的力量。例如,没有微积分就谈不上力学和现代科学技术,没有麦克斯威尔方程就没有电波理论,伦琴因发现X射线于1901成为诺贝尔的第一位获奖人,记者问他需要什么时,他回答:“第一是数学,第二是数学,第三还是数学。” 3、 数学是一种工具,一种思维的工具。自然哲学认为:任何事物都是量和质的统一体,数学就是研究量的科学,它不断地发现、总结和积累了很多人类对量的方面的规律,这些都是人们认识世界的有力工具。这里举两个例子:一个是自然科学的,一个是社会科学的。我们企图找到一个不经手术就可以准确确定人体内的器官位置、密度和三维形状的方法,可惜借助X射线只能绘出二维信息图。这个问题难倒了工程师很多年,后来遇到数学家的工作,即Radon变换,考尔麦克(Cormack)把X射线从许多不同角度照射人体,再运用计算机进行数学变换,导致CT数据透视仪的诞生,获得了1979年的诺贝尔医学奖。现在这一方法进一步推广到核磁共振领域,使图像分辨率更高。从本质上说,这两项技术只不过是,先大量测量一维的物理量,再用数学技巧来重构三维图像而已。 4、 数学是一门艺术,一门创造性艺术。美是艺术的一种追求,美也是数学中一种公认的评价标准。数学的美体现在和谐性、对称性、简洁性,这三性上。数学家不断地追求美好的新概念、新方法、新结论,因此数学是创造性艺术。人们掌握了数学,可以陶冶人的美感,培养理性的审美能力,一个人数学造诣越深,越是拥有一种直觉力,这种直觉力实际就是理性的洞察力、由美感驱动的选择力,最终成为创造美好新世界的驱动力。 这里突出地谈一谈简洁性。A、数学问题提得简洁。这是因为数学突出了本质的因素,必然是简洁的。例如尺规作图三分角问题。 B、数学语言是精炼的。例如欧拉公式:eix =cosx+isinx.把实数域中看不出有任何联系的指数函数和三角函数在复数域中巧妙地联系在一起。其特例:eiπ+1=0 把0、1、i、e、π五个重要常数简单而巧妙的结合在一起,太神奇了。又如,爱因斯坦把茫茫宇宙中的质能关系,用E=MC2 简单地表达出来,简单得令人拍案叫绝。 C、数学概念是简洁的。数学概念的内涵历经沧桑,千锤百炼,每一次变化都使概念更加清晰和更具一般性。例如函数概念:1673年,莱布尼兹定义:函数就象曲线上的点的坐标那样随点的变化而变动。1821年,柯西定义:对于X的每个值,如果Y有完全确定的值与之对应,则Y叫做X的函数。近代定义:设有A、B是非空的集合,F是A到B的一个对应法则,则A到B的F映射:A→B称为A到B上的函数。一步一步更简洁、更具一般性。 D、数学证明是简洁的。数学的目的就是尽可能用简单而基本的词汇尽可能地解释世界。因此,如果我们积累的经验要一代一代传下去的话,就必须不断地努力把它们加以简化和统一。 二、 从数学自身的研究对象来看数学 就是从数学内部来看数学。 恩格斯说:数学是现实世界中的空间形式与数量关系。数学就是研究数量、形状和他们之间关系的科学,这是数学的三大领域。当前数学还在发展,目前已经发展成为包括一百多个分枝的庞大系统。数学已经不是原来人们头脑中仅仅是数和形,仅仅是陈景润的概念了。随着计算机的发明和技术迅速提高,数学学科也进入了新的黄金时代。数学包括三个方面,模式、结构和模拟现实世界。它不光是理论,也是能力,是文化,是素质。 1、 数学发生图数学可分为五大学科:纯粹(基础)数学、应用数学、计算数学、运筹与控制、概率论与数理统计。 应用数学则以以上数学为综合理论基础,可分为:价值数学、运筹学、数理统计学、系统科学、决策论等。目前又发展出混沌、小波变换、分形几何等。 2、 算术 人类逐步有了数的概念,由自然数开始。由于人有十个手指,所以多数民族建立了十进位制的自然数表示方法。二十个一组的太多太大,不能一目了然,还要用上脚趾,五个一组又太少,使组数太多,十个一组是比较会让人喜爱的折衷方法。有古巴比仑记数法、希腊记数法、罗马记数法、中国记数法,发展进步了5000年后,印度人第一次发明了零,零加自然数称为为整数,传入伊斯兰世界形成目前通用的阿拉伯数字。计算机的出现又需要二进位制,就是近几十年的事了。 算术运算起步只需要有加法的概念,乘是多次加的简化运算,减是加的逆运算,除是乘的逆运算,这就是四则运算。除法很快导致了分数的出现,以十、百等为分母的除法,简化表达就是小数和循环小数。不是拥有钱而是欠人的钱如何表示,这就出现了负数,以上这些数放在一起,就是有理数,可以表示在一个数轴上。 人们曾经很长时间以为数轴上的数都是有理数,后来有人发现,正方形的边是1,它的对角线长度就无法用有理数表示,用园规在数轴上找到那个对应点就是无理数的点,这是第一次数学危机。1761年德国物理学家和数学家兰伯卢格严格证明了π也是一个无理数,这样把无理数包入之后,有理数与无理数统称为实数,数轴也称之为实数轴。后来人们发现,如果在实数轴上随机的抽取,得到有理数的概率几乎是零,得到无理数的概率几乎是1,无理数比有理数多得多。为什么会如此,因为我们生活的这个客观世界,本来就是无理的多过有理的。 为了解决负数的开平方是什么,16世纪出了虚数i,虚轴与实轴垂直交叉形成一个复平面,数也发展成为由虚部和实部组成的复数。数的概念会不会继续发展,我们试目以待。 3、代数 对实数的运算进入代数学阶段,有“加、减、乘、除、乘方、开方、指数、对数”八则,用符号代表数,列出方程,求解方程成了比算术更有力的武器。这个时期称为初等数学,从5世纪一直到17世纪,大约持续了一千多年。初等数学是常数的数学。对一组数群体性质的研究就导致线性代数。 4、几何 以上是研究数的,在研究形方面也平行的发展着,古希腊的欧几里得用公理化的方法,构建了几何学是最辉煌的成就。二千多年前的平面几何成就已经与目前中学几何教科书几乎一样了。他们还了解了众多曲线的性质,在计算复杂图形的面积时,接近了高等数学。还初步了解到三角函数的值。在几何学方面,后来进一步发展出非欧几何,包括罗巴切夫几何、黎曼几何、图论和拓扑学等分支。 直到17世纪,笛卡尔的工作终于把平行发展的代数与几何联系起来,除建立了平面坐标系之外,还完善了目前通行的符号运算系统。 5、变量数学 变化着的量以及它们间的依赖关系,产生了变量与函数的概念,研究函数的领域叫数学分析,其主要内容是微积分,牛顿由物理力学推动了微积分的产生,莱布尼兹从数学中求曲线多边形的面积出发推动了微积分的发现,两人的工作殊途同归,目前的微积分符号的记法,都是莱布尼兹最先采用的。他们都运用了极限的概念和无穷小的分析方法。 有了微积分,一系列分支出现了,如级数理论、微分方程、偏微分方程、微分几何等等。级数是无穷项数列的求和问题,微分方程是另一类方程,它们的解不是数而是函数,多元的情况下就出现了偏微分概念和偏微分方程。微分几何是关于曲线和曲面的一般理论,将实数分析的方法推广到复数域中就产生了复变函数论。 6、概率论和数理统计 前面涉及的数量,无论是常量还是变量都是确定的量,但自然界中存在大量的随机现象,其中存在很多不确定的、不可预测的量、是具有偶然性的量,这就由赌博中产生了概率论及其统计学等相关分枝。 7、模糊数学 前面涉及的数量,无论是常量还是变量都是“准确”的量,但自然界中存在大量的不准确现象,人为地准确化只能使我们对客观世界的描述变得不准确。“乏晰数学”Fuzzy就是以这种思想观点和方法研究问题的数学。 三、什么是数学素养 数学素养属于认识论和方法论的综合性思维形式,它具有概念化、抽象化、模式化的认识特征。具有数学素养的人善于把数学中的概念结论和处理方法推广应用于认识一切客观事物,具有这样的哲学高度和认识特征。具体说,一个具有“数学素养”的人在他的认识世界和改造世界的活动中,常常表现出以下特点: 1、 在讨论问题时,习惯于强调定义(界定概念),强调问题存在的条件; 2、 在观察问题时,习惯于抓住其中的(函数)关系,在微观(局部)认识基础上进一步做出多因素的全局性(全空间)考虑; 3、 在认识问题时,习惯于将已有的严格的数学概念如对偶、相关、随机、泛涵、非线性、周期性、混沌等等概念广义化,用于认识现实中的问题。比如可以看出价格是商品的对偶,效益是公司的泛涵等等。 更通俗地说,数学素养就是数学家的一种职业习惯,“三句话不离本行”,我们希望把我们的专业搞得更好,更精密更严格,有些这种优秀的职业习惯当然是好事。人的所有修养,有意识的修养比无意识地、仅凭自然增长地修养来得快得多。只要有这样强烈的要求、愿望和意识,坚持下去人人都可以形成较高的数学素养。 一位名家说:真正的数学家应能把他的东西讲给任何人听得懂。因为任何数学形式再复杂,总有它简单的思想实质,因而掌握这种数学思想总是容易的,这一点在大家学习数学时一定要明确。在现代科学中数学能力、数学思维十分重要,这种能力不是表现在死记硬背,不光表现在计算能力,在计算机时代特别表现在建模能力,建模能力的基础就是数学素养。思想比公式更重要,建模比计算更重要。学数学,用数学,对它始终有兴趣,是培养数学素养的好条件、好方法、好场所。希望同学们消除对数学的畏惧感,培养对数学的兴趣,增进学好数学的信心,了解更多的现代数学的概念和思想、提高数学悟性和数学意识、培养数学思维的习惯。 请注意,我们往往只注意到数学的思想方法中严格推理的一面,它属于“演绎”的范畴,其实,数学修养中也有对偶的一面――“归纳”,称之为“合情推理”或“常识推理”,它要求我们培养和运用灵活、猜想和活跃的思维习惯。 下面举一个例子,看看数学素养在其中如何发挥作用。18世纪德国哥德堡有一条河,河中有两个岛,两岸于两岛间架有七座桥。问题是:一个人怎样走才可以不重复的走遍七座桥而回到原地。
研究数学发展历史的学科,是数学的一个分支,也是自然科学史研究下属的一个重要分支。和所有的自然科学史一样,数学史也是自然科学和历史科学之间的交叉学科。数学史研究所使用的方法主要是历史科学的方法,在这一点上,它与通常的数学研究方法不同。它研究的对象是数学发展的历史,因此它与通常历史科学研究的对象又不相同。具体地说,它所研究的内容是: ①数学史研究方法论问题;②总的学科发展史——数学史通史;③数学各分支的分科史(包括细小分支的历史);④不同国家、民族、地区的数学史及其比较;⑤不同时期的断代数学史;⑥数学家传记;⑦数学思想、数学概念、数学方法发展的历史;⑧数学发展与其他科学、社会现象之间的关系;⑨数学教育史;⑩数学史文献学;等等。按其研究的范围又可分为内史和外史。 内史 从数学内在的原因(包括和其他自然科学之间的关系)来研究数学发展的历史; 外史 从外在的社会原因(包括政治、经济、哲学思潮等原因)来研究数学发展与其他社会因素间的关系。 数学史和数学研究的各个分支,和社会史与文化史的各个方面都有着密切的联系,这表明数学史具有多学科交叉与综合性强的性质。 人们研究数学史的历史,由来甚早。古希腊时就曾有人写过一部《几何学史》,可惜未能流传下来,但在5世纪普罗克洛斯对欧几里得《几何原本》第一卷的注文中还保留有一部分资料。中世纪阿拉伯国家的一些传记作品和数学著作中,曾讲述到一些数学家的生平以及其他有关数学史的材料。12世纪时,大量的古希腊和中世纪阿拉伯数学书籍传入西欧。这些著作的翻译既是当时的数学研究,也是对古典数学著作的整理和保存。 近代西欧各国的数学史研究,是从18世纪,由JÉ蒙蒂克拉、C博絮埃、AC克斯特纳同时开始,而以蒙蒂克拉1758年出版的《数学史》(1799~1802年又经Jde拉朗德增补)为代表。从19世纪末叶起,研究数学史的人逐渐增多,断代史和分科史的研究也逐渐展开,1945年以后,更有了新的发展。19世纪末叶以后的数学史研究可以分为下述几个方面。 ①通史研究 代表作可以举出MB康托尔的《数学史讲义》(4卷,1880~1908)以及CB博耶(1894、1919)、DE史密斯(2卷,1923~1925)、洛里亚(3卷,1929~1933)等人的著作。法国的布尔巴基学派也写了一部数学史收入《数学原理》丛书之中。以尤什凯维奇为代表的苏联学者和以弥永昌吉、伊东俊太郎为代表的日本学者也都有多卷本数学通史出版。1972年美国M克莱因所著《古今数学思想》一书,被认为是70年代以来的一部佳作。 ②古希腊数学史 许多古希腊数学家的著作被译成现代文字,在这方面作出了成绩的有JL海贝格、胡尔奇、TL希思等人。洛里亚和希思还写出了古希腊数学通史。20世纪30年代起,著名的代数学家范·德·瓦尔登在古希腊数学史方面也作出成绩。60年代以来匈牙利的A萨博的工作则更为突出,他从哲学史出发论述了欧几里得公理体系的起源。 ③古埃及和巴比伦数学史 把巴比伦楔形文字泥板算书和古埃及纸草算书译成现代文字是艰难的工作。查斯和阿奇博尔德等人都译过纸草算书,而诺伊格鲍尔锲而不舍数十年对楔形文字泥板算书的研究则更为有名。他所著的《楔形文字数学史料研究》(1935、1937)、《楔形文字数学书》(与萨克斯合著,1945)都是这方面的权威性著作。他所著《古代精密科学》(1951)一书,汇集了半个世纪以来关于古埃及和巴比伦数学史研究成果。范·德·瓦尔登的《科学的觉醒》(1954)一书,则又加进古希腊数学史,成为古代世界数学史的权威性著作之一。 ④断代史和分科史研究 德国数学家(C)F克莱因著的《19世纪数学发展史讲义》(1926~1927)一书,是断代体近现代数学史研究的开始,它成书于20世纪,但其中所反映的对数学的看法却大都是19世纪的。直到1978年法国数学家J迪厄多内所写的《1700~1900数学史概论》出版之前,断代体数学史专著并不多,但却有(CH)H外尔写的《半个世纪的数学》之类的著名论文。对数学各分支的历史,从数论、概率论,直到流形概念、希尔伯特23个数学问题的历史等,有多种专著出现,而且不乏名家手笔。许多著名数学家参预数学史的研究,可能是基于(J-)H庞加莱的如下信念,即:“如果我们想要预见数学的将来,适当的途径是研究这门科学的历史和现状”,或是如H外尔所说的:“如果不知道远溯古希腊各代前辈所建立的和发展的概念方法和结果,我们就不可能理解近50年来数学的目标,也不可能理解它的成就。” ⑤历代数学家的传记以及他们的《全集》、《选集》的整理和出版 这是数学史研究的大量工作之一。此外还有多种《数学经典论著选读》出现,辑录了历代数学家成名之作的珍贵片断。 ⑥专业性学术杂志 最早出现于19世纪末,MB康托尔(1877~1913,30卷)和洛里亚(1898~1922,21卷)都曾主编过数学史杂志,最有名的是埃内斯特勒姆主编的《数学宝藏》(1884~1915,30卷)。现代则有国际科学史协会数学史分会主编的《国际数学史杂志》。 中国以历史传统悠久而著称于世界,在历代正史的《律历志》“备数”条内常常论述到数学的作用和数学的历史。例如较早的《汉书·律历志》说数学是“推历、生律、 制器、 规圆、矩方、权重、衡平、准绳、嘉量,探赜索稳,钩深致远,莫不用焉”。《隋书·律历志》记述了圆周率计算的历史,记载了祖冲之的光辉成就。历代正史《列传》中,有时也给出了数学家的传记。正史的《经籍志》则记载有数学书目。 在中国古算书的序、跋中,经常出现数学史的内容。如刘徽注《九章算术》序 (263)中曾谈到《九章算术》形成的历史;王孝通“上缉古算经表”中曾对刘徽、祖冲之等人的数学工作进行评论;祖颐为《四元玉鉴》所写的序文中讲述了由天元术发展成四元术的历史。宋刊本《数术记遗》之后附录有“算学源流”,这是中国,也是世界上最早用印刷术保存下来的数学史资料。程大位 《算法统宗》(1592)书末附有“算经源流”,记录了宋明间的数学书目。 以上所述属于零散的片断资料,对中国古代数学史进行较为系统的整理和研究,则是在乾嘉学派的影响下,在清代中晚期进行的。主要有:①对古算书的整理和研究,《算经十书》(汉唐间算书)和宋元算书的校订、注释和出版,参预此项工作的有戴震(1724~1777)、李潢(?~1811)、阮元(1764~1849)、沈钦裴(1829年校算《四元玉鉴》)、罗士琳(1789~1853)等人。②编辑出版了《畴人传》(数学家和天文学家的传记),它“肇自黄帝,迄于昭(清)代,凡为此学者,人为之传”,它是由阮元、李锐等编辑的(1795~1799)。其后,罗士琳作“补遗”(1840),诸可宝作《畴人传三编》(1886),黄钟骏又作《畴人传四编》(1898)。《畴人传》,实际上就是一部人物传记体裁的数学史。收入人物多,资料丰富,评论允当,它完全可以和蒙蒂克拉的数学史相媲美。 利用现代数学概念,对中国数学史进行研究和整理,从而使中国数学史研究建立在现代科学方法之上的学科奠基人,是李俨和钱宝琮。他们都是从五四运动前后起,开始搜集古算书,进行考订、整理和开展研究工作的。经过半个多世纪,李俨的论文自编为《中算史论丛》(1~5集,1954~1955),钱宝琮则有《钱宝琮科学史论文集》(1984)行世。从20世纪30年代起,两人都有通史性中国数学史专著出版,李俨有《中国算学史》(1937)、《中国数学大纲》(1958);钱宝琮有《中国算学史》(上,1932)并主编了《中国数学史》(1964)。钱宝琮校点的《算经十书》(1963)和上述各种专著一道,都是权威性著作。 从19世纪末,即有人(伟烈亚力、赫师慎等)用外文发表中国数学史方面的文章。20世纪初日本人三上义夫的《数学在中国和日本的发展》以及50年代李约瑟在其巨著《中国科学技术史》(第三卷)中对中国数学史进行了全面的介绍。有一些中国的古典算书已经有日、英、法、俄、德等文字的译本。在英、美、日、俄、法、比利时等国都有人直接利用中国古典文献进行中国数学史的研究以及和其他国家和地区数学史的比较研究。
一、数学教育论文的基本结构标题(论文中心内容的概括,要求确切、恰当、鲜明、简短、精炼,一般不超过20字)作者名(单位名、省、市、邮政编码)摘要: [ 摘要的内容应全部源自论文本身,是论文内容的高度“浓缩”,使读者能迅速了解论文的主要内容。它要求准确、简明扼要(一般不超过300字)、独立完整、客观陈述(不能以第三者的口气进行介绍、评论,如“文章认为……”、“本文通过……”、“本文论述了……”、“本文探讨了……”、“本文首次提出了……”这些表述是不符合要求的)]关键词: (关键词是从论文中选取出来,用以表示全文主题内容信息的单词或术语,约3—8个)引言(开头语)1.选题的原因和重要性。2.对本课题已有研究情况的述评,如研究进展、对现有结论的评价、尚未解决的问题等。3.本课题研究的目的、方法、计划。4.本课题研究的意义和价值。几种常见的开头方法:内容范围开头法,即说明本文要论述的内容范围;问题开头法,即以数学问题或研究对象所存在的问题的方式开头;设问开头法,即以设问的形式把论文要论述的中心内容表达出来;目的开头法,即直接把论文要达到的目的告诉读者;背景开头法,即阐述所研究课题的历史背景;结论开头法,即直接阐述论文的的主要结论。正文1…………1……2……3……2…………………结论与讨论(结束语)结论部分起着总结全文、深化主题、揭示规律的作用,其内容大致为概述自己研究了什么问题,取得了什么结论,需要进一步研究的问题。下列情况可以省略结论部分:1.前言部分已对结论进行了概括;2.结论已不言自明;3.验证性的论文;4.商榷、反驳、补充性的论文。附录 附录是指因内容多,篇幅长而不便写入正文,但又必须向读者交代清楚的一些重要材料。因为正文中有些内容意犹未尽,列入正文中撰写又会冲淡主题,为此,在论文的最后部分以附录的方式进行弥补。附录的内容主要有座谈会提纲、问卷调查表格、测试问题、各类图表等。参考文献 参考文献是指作者在撰写论文的过程中所引用的图书资料,包括参阅或直接引用的材料、数据、论点、词句,而必须在论文中注明出处的内容。它包括各种著作、期刊、学术报告、学位论文、科技报告、专利、技术标准等。 一般地说,在论文中引用前人的观点、数据、材料时,应按先后顺序标明数码,依次列出所引用内容的出处。 引用文献为期刊,可仿下面的例子书写:[1]何小亚 数学应用题认知障碍的分析[J]上海教育科研,2001,6:41-[5] 何小亚 建构良好的数学认知结构的教学策略[J]数学教育学报 2002,11(1): 引用文献为专著、论文集、学位论文、学术报告等,可仿下面的例子书写:[2]赵振威,黄熙宗,范叙保,等 中学数学解题研究[M] 江苏:江苏教育出版社, 96- 引用文献为报纸,可仿下例书写:[8]谢希德 创造学习的新思路[N] 人民日报,1998—12—25(10) 上述指的是一般小论文的格式。对于毕业论文,则要按照下面的格式。一、问题的提出(背景、问题、你要研究什么问题……)二、术语界定(术语界定就是去解释规定你论文中要用到的关键术语,如“新课标”是什么意思?、“数学建模”指的是什么?、“渗透”是什么意思……)三、研究的现状(综述同行(相关文献)的研究情况)(谁/什么文献/研究什么/什么结论/简单的评价。要以脚注的形式标明出处。文献综述最好按类别进行。 四、研究的意义(价值)及理论基础(你的理论主要是数学课程标准理论)五、研究方法(你的方法属文献研究、比较研究、定性研究)六、研究结果就是以下你的正文中属于你自己研究的结果。自己的东西有多少就写多少,不一定要面面俱到。别人的结果要放在研究现状里。否则读者很难区分哪一部分是别人的,哪一部分是你的。七、研究结论(根据“五、研究结果”得出的结论)八、研究展望(研究的不足/存在的问题/进一步值得研究的问题)二、数学教育论文的选题 1.学习研究数学教育文献 数学教育类期刊Educational Studies in Mathematics(荷兰);Journal for Research in Mathematics Education(美);Mathematics Teaching(英);Mathematics Teacher(美);《课程 教材 教法》(人民教育出版社)《数学教育学报》(天津师范大学等)《数学通报》(中国数学会,北京师范大学);《数学教学》(华东师范大学);《中学数学》(湖北大学);《中学数学教学参考》(陕西师范大学);《中学数学研究》(华南师范大学)。2.把握数学教育研究的新动向及时了解数学教育研究的新动向、新成果,积极参与教学改革,勇于实践,教学与科研相结合。3.研究课程标准和新教材九年义务教育阶段数学课程标准,高中数学课程标准,各种版本的新教材4.研究学生学习数学的过程和教学方法5.研究初等数学问题 对初等数学各个分支中的某些问题或某种方法进行专门的研究,比如某个定理的推广和改进,某种解题方法的提出与应用。 三、注意事项 1.结合自己的兴趣特长选择研究课题 2.注意文献资料的取舍围绕课题选择文献资料,选择的材料应具有典型性(代表性)、实践性、理论性和新颖性构思与布局在总体构思论文的框架结构时,要注意从整体上思考如何提出问题、分析问题和解决问题,将论文分成几个部分,每一部分又细分为几个小的部分,每一小部分有哪些要点。修改和定稿初稿完成后,应仔细推敲,反复修改,要敢于否定自己,切忌马虎走过场。注意创新论文应注意创新,最忌讳因循守旧,人家写什么,自己也写什么,跟在别人后面人云亦云。我们在撰写数学教育论文时,无论是题目、内容、论点、例证,还是解决问题的思路和方法都应该锐意创新,因为有无创新是一篇论文质量高底的重要标志。 6.不容易被刊用的稿件的特点(1)论述的经验、方法是众所周知的;(2)所列举的数据有为自己评功摆好的嫌疑;(3)选用的例证陈旧;(4)仅仅是例证的堆砌,缺少深刻的理论分析;(5)概念不清,逻辑推理出错;(6)结论的推导冗长而应用面狭窄;(7)课题过大,设计面过宽,讨论问题面面俱到,但不深入;(8)文章过长(超过5000字)。 附件四:研究课题举例一、一般性的研究课题中学数学课程标准的分析研究关于高考数学命题及答卷的研究数学开放题研究数学应用题研究优秀数学教师的教育思想及教学艺术评析数学教学改革实验研究数学差生的成因与教学对策学生数学能力评价研究数学教育中的素质教育内涵中学数学教学与学生创新意识培养中学数学教学与学生应用意识培养数学课程评价的理论与实践数学语言教学研究数学思想方法的教学研究中学数学作业处理运用数学方法论指导数学教学中学生数学阅读能力的调查研究中学生数学语言能力的调查研究数学学习方式的调查研究数学交流能力的调查研究二、 高中数学新课程教学方面的研究课题(一)在新课程理念下对原有内容的教学研究函数教学研究向量教学研究立体几何教学研究解析几何教学研究导数及其应用教学研究概率与统计的教学研究不等式教学研究三角恒等变换教学研究 (二)对新增内容的教学研究算法教学研究统计案例教学研究框图、推理与证明教学研究选修系列3教学研究选修系列4教学研究(三)双基与能力教学研究新课程理念下高中数学双基教学设计研究关于培养学生抽象、概括能力的研究关于合情推理与演绎推理在培养学生思维能力中的作用的研究数学新课程实施中学生自主学习的研究数学教学中培养学生自我监控能力的研究关于《标准》中课程内容与要求的科学性、可行性的研究数学文化对于促进学生数学学习的研究数学教学中渗透数学探究、研究性学习的研究 三、高中数学新课程的评价课题对学生数学学习过程评价的研究体现新课程理念的模块终结性评价工具与方法的开发对选修系列3、选修系列4读书报告的评价对数学探究、数学建模的评价高中新数学课程课堂教学评价高中数学教师专业化发展评价数学新课程理念下的高考命题研究数学教学中情感、态度、价值观的评价关于过程性评价与终结性评价有机结合的研究 四、高中数学新课程的信息技术研究课题信息技术的三重连环表示法(数字、图形与符号)对于数学教学的影响与作用网络环境对于数学新课程实施的促进作用(如运用网络资源,展现数学文化)信息技术与研究性学习的融合运用信息技术手段,改变学生学习方式(结合具体内容研究)信息技术对评价的形式与内容带来的影响以信息技术为主要手段的数学课程和教学资源库的建立信息技术对于学生数学能力(如图形直观能力、逻辑思维能力或运算能力等)的影响与促进运用信息技术手段,展示数学知识的发生和发展过程的案例研究信息技术与数学课程内容整合的案例开发 五、高中数学新课程的课程资源研究课题算法的背景与实例的收集与积累概率与统计的背景与实例的收集与积累导数及其应用的背景与实例的收集与积累关于高中数学选修系列3课程资源的开发与积累关于高中数学选修系列4课程资源的开发与积累现行高中数学新教材的比较研究数学新课程资源的拓广与应用网上数学资源的拓广与利用数学教学软件的研制与开发数学教学资源的传播与信息共享 六、高中数学新课程的研究性学习(数学建模、数学探究)如何指导学生选择数学探究、数学建模的课题数学探究、数学建模活动与课堂教学的关系研究研究性学习对培养学生能力的作用中学数学教材、教学研究的问题1.“好”的情境的标准是什么?如何开发?若干优秀情境交流。2.如何在一些重要的数学概念(如,函数)中,突显“数学化”过程。2.一些重要的数学思想在中学数学中的渗透(如随机的思想、公理化的思想)。3.统计与概率内容的系统设计及案例交流。4.课题学习的系统设计及案例交流。5.整理与复习的系统设计及案例交流。6.几何内容的系统设计及案例交流。7.发展学生推理能力的系统设计及案例交流。8.小学、初中、高中的衔接,知识之间的联系(哪些重要的联系?如何体现?)。9.信息技术对课程内容选择、呈现以及教师专业发展的影响。如何体现数学的文化价值,不只局限于数学史。教材如何体现教学内容的弹性(阅读材料、选学内容、开放问题、提供参考书籍)教材怎样才能更好地体现数学的特点及学生的认知特点。建立数学模型与数学的双基教学。14.如何处理教材“留白”和学生自学(阅读)之间的关系。教材“留白”与教师发展空间之间的关系。对评价的思考与实践。 附二:教学设计模板 课题名称:×××××××教学年级:×年级设计者:(姓名、单位、邮编、联系电话(手机或小灵通!)、E-mail等)一、教学内容分析1.教学主要内容2.教材编写特点本节课内容在单元中的地位,本节课教材编写的意图及特点等。3.教材内容的数学核心思想4.我的思考下面的学习目标、活动设计、组织与实施是如何落实对教学内容分析的理解,特别是核心数学思想的落实。说明:教学内容分析应该建立在教师良好的数学素养之上。可以在教学组内或学区中心集体研讨,或专家的指导下完成。需要注意的是,对教学内容的分析应体现在学习目标和教学过程的设计上。二、学生分析1.学生已有知识基础(包括知识技能,也包括方法)2.学生已有生活经验和学习该内容的经验 3.学生学习该内容可能的困难4.学生学习的兴趣、学习方式和学法分析5.我的思考:下面的学习目标、活动设计、组织与实施是如何落实对学生分析的理解。说明:学生分析应该通过对学生的实际调研作为科学依据,不能仅凭经验判断。学生分析是个性化的工作,不能由他人的结果简单代替自己的学生分析。已有知识基础的调研可以通过设计几个指向明确的小问题实现,对这方面的数据统计及分析是更为重要的,这种分析是教师设计和修正“学习目标”的重要依据。学生经验、学生学习困难、学生学习兴趣等的调研可以通过访谈实现,可以是抽样,也可以是有针对性的,如对于学困生做特别的访谈,可能会发现他们身上所具有的学习要素。 调研中可以将学生测验、访谈、小组观察等结合起来。三、学习目标(以学生为主语)1. 知识与技能2. 过程与方法(数学思考、解决问题)3. 情感态度价值观说明:1.教学内容分析和学生分析是学习目标制定的依据和前提。因此,如果对教学内容分析的要求越透彻,对学生分析的要求越科学和规范,学习目标的设计就越不是一件简单而迅速的工作。2.学习目标是为学生的“学”所设计,教师的“教”是为学生的学习目标的达成服务的。学习目标是个性化的,又是尊重数学学科发展需要和学生未来学习需要的。3.学习目标的制定应从以上几个方面进行思考,但具体形式不一定逐条对应。4.学习目标应该在下面的教学活动中得到实在的落实。特别是教学活动中设计意图应该阐释,活动及其组织与实施是如何为达成目标服务的。四、教学活动教学活动就是为学习目标的实现所设计的活动。包括1.活动内容2.活动的组织与实施说明:指教学活动开展的具体形式,包括学生学习方式—独立学习,还是合作学习等;教师活动的开展—提问或提出任务,组织合作学习,组织交流,讲授等;教学资源的准备等,如学具、教具、课件等。3.活动的设计意图说明:为教学活动和活动的组织实施进行辩护,辩护的出发点是分析它们是否促成了学生学习目标的达成。不是简单地主观臆断是为目标服务,应该有一定的理由—数学的、教学的。更不应该写成一些没有针对性,放之四海而皆准的“普遍真理”。4. 活动的时间分配预设说明:主要指对教学活动的时间分配预设,以便于自己检测教学设计上合理与否。可以参考下面的表格形式,也可以用文档的形式。活动内容活动的组织与实施(含教师活动和学生活动)设计意图时间分配五、教学效果评价目的是检测学习目标是否实现,为进行教学反思和改进教学提供依据。可以采取测验、访谈、课堂观察等多种方式评价教学效果。教学设计中应包括教学效果评价的方案。例如,对于知识技能目标达成度的评价,可以设计当堂课或课后能够做的1-2个小问题。以下几点供教师思考:(1) 情境的作用是什么?应该为学习目标服务,不是仅仅追求“热闹”。(2) 如何组织有效的教学活动,如小组活动的组织、信息技术的使用、练习的设计等,使得它们更为有效?(3) 学习目标是教学设计的核心,设计了就要努力执行和实现。所有的教学活动和教学设计都应该为促成“目标”的实现服务。(4) 教学是需要设计的,最后达到寓教于“无形”之中。(5) 设计应该考虑单元或更大的范围。