quqiuliang
每个学校都有他规定的格式的,你最好问下你们学校的领导吧。来源:金鼎论文 
现代数学时期是指由19世纪20年代至今,这一时期数学主要研究的是最一般的数量关系和空间形式,数和量仅仅是它的极特殊的情形,通常的一维、二维、三维空间的几何形象也仅仅是特殊情形。抽象代数、拓扑学、泛函分析是整个现代数学科学的主体部分。它们是大学数学专业的课程,非数学专业也要具备其中某些知识。变量数学时期新兴起的许多学科,蓬勃地向前发展,内容和方法不断地充实、扩大和深入。 18、19世纪之交,数学已经达到丰沛茂密的境地,似乎数学的宝藏已经挖掘殆尽,再没有多大的发展余地了。然而,这只是暴风雨前夕的宁静。19世纪20年代,数学革命的狂飙终于来临了,数学开始了一连串本质的变化,从此数学又迈入了一个新的时期——现代数学时期。 19世纪前半叶,数学上出现两项革命性的发现——非欧几何与不可交换代数。 大约在1826年,人们发现了与通常的欧几里得几何不同的、但也是正确的几何——非欧几何。这是由罗巴契夫斯基和里耶首先提出的。非欧几何的出现,改变了人们认为欧氏几何唯一地存在是天经地义的观点。它的革命思想不仅为新几何学开辟了道路,而且是20世纪相对论产生的前奏和准备。 后来证明,非欧几何所导致的思想解放对现代数学和现代科学有着极为重要的意义,因为人类终于开始突破感官的局限而深入到自然的更深刻的本质。从这个意义上说,为确立和发展非欧几何贡献了一生的罗巴契夫斯基不愧为现代科学的先驱者。 1854年,黎曼推广了空间的概念,开创了几何学一片更广阔的领域——黎曼几何学。非欧几何学的发现还促进了公理方法的深入探讨,研究可以作为基础的概念和原则,分析公理的完全性、相容性和独立性等问题。1899年,希尔伯特对此作了重大贡献。 在1843年,哈密顿发现了一种乘法交换律不成立的代数——四元数代数。不可交换代数的出现,改变了人们认为存在与一般的算术代数不同的代数是不可思议的观点。它的革命思想打开了近代代数的大门。 另一方面,由于一元方程根式求解条件的探究,引进了群的概念。19世纪20~30年代,阿贝尔和伽罗华开创了近世代数学的研究。近代代数是相对古典代数来说的,古典代数的内容是以讨论方程的解法为中心的。群论之后,多种代数系统(环、域、格、布尔代数、线性空间等)被建立。这时,代数学的研究对象扩大为向量、矩阵,等等,并渐渐转向代数系统结构本身的研究。 上述两大事件和它们引起的发展,被称为几何学的解放和代数学的解放。 19世纪还发生了第三个有深远意义的数学事件:分析的算术化。1874年威尔斯特拉斯提出了一个引人注目的例子,要求人们对分析基础作更深刻的理解。他提出了被称为“分析的算术化”的著名设想,实数系本身最先应该严格化,然后分析的所有概念应该由此数系导出。他和后继者们使这个设想基本上得以实现,使今天的全部分析可以从表明实数系特征的一个公设集中逻辑地推导出来。 现代数学家们的研究,远远超出了把实数系作为分析基础的设想。欧几里得几何通过其分析的解释,也可以放在实数系中;如果欧氏几何是相容的,则几何的多数分支是相容的。实数系(或某部分)可以用来解群代数的众多分支;可使大量的代数相容性依赖于实数系的相容性。事实上,可以说:如果实数系是相容的,则现存的全部数学也是相容的。 19世纪后期,由于狄德金、康托和皮亚诺的工作,这些数学基础已经建立在更简单、更基础的自然数系之上。即他们证明了实数系(由此导出多种数学)能从确立自然数系的公设集中导出。20世纪初期,证明了自然数可用集合论概念来定义,因而各种数学能以集合论为基础来讲述。 拓扑学开始是几何学的一个分支,但是直到20世纪的第二个1/4世纪,它才得到了推广。拓扑学可以粗略地定义为对于连续性的数学研究。科学家们认识到:任何事物的集合,不管是点的集合、数的集合、代数实体的集合、函数的集合或非数学对象的集合,都能在某种意义上构成拓扑空间。拓扑学的概念和理论,已经成功地应用于电磁学和物理学的研究。 20世纪有许多数学著作曾致力于仔细考查数学的逻辑基础和结构,这反过来导致公理学的产生,即对于公设集合及其性质的研究。许多数学概念经受了重大的变革和推广,并且像集合论、近世代数学和拓扑学这样深奥的基础学科也得到广泛发展。一般(或抽象)集合论导致的一些意义深远而困扰人们的悖论,迫切需要得到处理。逻辑本身作为在数学上以承认的前提去得出结论的工具,被认真地检查,从而产生了数理逻辑。逻辑与哲学的多种关系,导致数学哲学的各种不同学派的出现。 20世纪40~50年代,世界科学史上发生了三件惊天动地的大事,即原子能的利用、电子计算机的发明和空间技术的兴起。此外还出现了许多新的情况,促使数学发生急剧的变化。这些情况是:现代科学技术研究的对象,日益超出人类的感官范围以外,向高温、高压、高速、高强度、远距离、自动化发展。以长度单位为例、小到1尘(毫微微米,即10^-15米),大到100万秒差距(8万光年)。这些测量和研究都不能依赖于感官的直接经验,越来越多地要依靠理论计算的指导。其次是科学实验的规模空前扩大,一个大型的实验,要耗费大量的人力和物力。为了减少浪费和避免盲目性,迫切需要精确的理论分机和设计。再次是现代科学技术日益趋向定量化,各个科学技术领域,都需要使用数学工具。数学几乎渗透到所有的科学部门中去,从而形成了许多边缘数学学科,例如生物数学、生物统计学、数理生物学、数理语言学等等。 上述情况使得数学发展呈现出一些比较明显的特点,可以简单地归纳为三个方面:计算机科学的形成,应用数学出现众多的新分支、纯粹数学有若干重大的突破。 1945年,第一台电子计算机诞生以后,由于电子计算机应用广泛、影响巨大,围绕它很自然要形成一门庞大的科学。粗略地说,计算机科学是对计算机体系、软件和某些特殊应用进行探索和理论研究的一门科学。计算数学可以归入计算机科学之中,但它也可以算是一门应用数学。 计算机的设计与制造的大部分工作,通常是计算机工程或电子工程的事。软件是指解题的程序、程序语言、编制程序的方法等。研究软件需要使用数理逻辑、代数、数理语言学、组合理论、图论、计算方法等很多的数学工具。目前电子计算机的应用已达数千种,还有不断增加的趋势。但只有某些特殊应用才归入计算机科学之中,例如机器翻译、人工智能、机器证明、图形识别、图象处理等。 应用数学和纯粹数学(或基础理论)从来就没有严格的界限。大体上说,纯粹数学是数学的这一部分,它暂时不考虑对其它知识领域或生产实践上的直接应用,它间接地推动有关学科的发展或者在若干年后才发现其直接应用;而应用数学,可以说是纯粹数学与科学技术之间的桥梁。 20世纪40年代以后,涌现出了大量新的应用数学科目,内容的丰富、应用的广泛、名目的繁多都是史无前例的。例如对策论、规划论、排队论、最优化方法、运筹学、信息论、控制论、系统分析、可靠性理论等。这些分支所研究的范围和互相间的关系很难划清,也有的因为用了很多概率统计的工具,又可以看作概率统计的新应用或新分支,还有的可以归入计算机科学之中等等。 20世纪40年代以后,基础理论也有了飞速的发展,出现许多突破性的工作,解决了一些带根本性质的问题。在这过程中引入了新的概念、新的方法,推动了整个数学前进。例如,希尔伯特1990年在国际教学家大会上提出的尚待解决的23个问题中,有些问题得到了解决。60年代以来,还出现了如非标准分析、模糊数学、突变理论等新兴的数学分支。此外,近几十年来经典数学也获得了巨大进展,如概率论、数理统计、解析数论、微分几何、代数几何、微分方程、因数论、泛函分析、数理逻辑等等。 当代数学的研究成果,有了几乎爆炸性的增长。刊载数学论文的杂志,在17世纪末以前,只有17种(最初的出于1665年);18世纪有210种;19世纪有950种。20世纪的统计数字更为增长。在本世纪初,每年发表的数学论文不过1000篇;到1960年,美国《数学评论》发表的论文摘要是7824篇,到1973年为20410篇,1979年已达52812篇,文献呈指数式增长之势。数学的三大特点—高度抽象性、应用广泛性、体系严谨性,更加明显地表露出来。 今天,差不多每个国家都有自己的数学学会,而且许多国家还有致力于各种水平的数学教育的团体。它们已经成为推动数学发展的有力因素之一。目前数学还有加速发展的趋势,这是过去任何一个时期所不能比拟的。 现代数学虽然呈现出多姿多彩的局面,但是它的主要特点可以概括如下:(1)数学的对象、内容在深度和广度上都有了很大的发展,分析学、代数学、几何学的思想、理论和方法都发生了惊人的变化,数学的不断分化,不断综合的趋势都在加强。(2)电子计算机进入数学领域,产生巨大而深远的影响。(3)数学渗透到几乎所有的科学领域,并且起着越来越大的作用,纯粹数学不断向纵深发展,数理逻辑和数学基础已经成为整个数学大厦基础。 以上简要地介绍了数学在古代、近代、现代三个大的发展时期的情况。如果把数学研究比喻为研究“飞”,那么第一个时期主要研究飞鸟的几张相片(静止、常量);第二个时期主要研究飞鸟的几部电影(运动、变量);第三个时期主要研究飞鸟、飞机、飞船等等的所具有的一般性质(抽象、集合)。 这是一个由简单到复杂、由具体到抽象、由低级向高级、由特殊到一般的发展过程。如果从几何学的范畴来看,那么欧氏几何学、解析几何学和非欧几何学就可以作为数学三大发展时期的有代表性的成果;而欧几里得、笛卡儿和罗巴契夫斯基更是可以作为各时期的代表人物。
论文摘要包括目的、方法、结果和结论四部分。1、目的简明指出此项工作的目的,研究的范围。 2、方法 简要说明研究课题的基本做法,包括对象(分组及每组例数、对照例数或动物只数等)、材料和方法(包括所用药品剂量,重复次数等)。统计方法特殊者需注明。 3、结果 简要列出主要结果(需注明单位)、数据、统计学意义(P值)等,并说明其价值和局限性。 4、结论 简要说明从该项研究结果取得的正确观点、理论意义或实用价值、推广前景。中、英文摘要前需标明中、英文文题,作者姓名(至多3名)及作者单位(邮政编码)。英文摘要应隔行打字,以便修改。 写论文的注意事项1、低级错误要避开 不少同学在写论文的时候,会常常犯一些低级错误。论文中出现低级错误的话,是会拉低我们论文的水平的,所以大家在写作的时候,一些低级错误最好避开。 2、研究方法的介绍要丰富 在撰写毕业论文时,关于研究方法的介绍,一定要尽量丰富一点。研究方法的介绍过于简单的话,读者就无法通过这个方法进一步进行检验,也无法清楚了解该方法是否是科学、客观的。3、避免随意捏造在撰写毕业论文的时候,一定要遵循客观、真实、科学的原则来写。千万不要随意捏造一些不存在的事件或者凭空想象一些没有经过求证的事件来写。要知道这样写出来的论文不仅缺乏科学性,还缺乏客观性和真实性。
据学术堂了解,论文摘要一般应说明研究工作目的、实验方法、结果和最终结论等.而重点是结果和结论。中文摘要一般不宜超过300字,外文摘要不宜超过250个实词。除了实在迫不得已,摘要中不用图、表、化学结构式、非公知公用的符号和术语。摘要可用另页置于题名页(页上无正文)之前,学术论文的摘要一般置于题名和作者之后,论文正文之前。 论文摘要又称概要、内容提要。摘要是以提供文献内容梗概为目的,不加评论和补充解释,简明、确切地记述文献重要内容的短文。其基本要素包括研究目的、方法、结果和结论。具体地讲就是研究工作的主要对象和范围,采用的手段和方法,得出的结果和重要的结论,有时也包括具有情报价值的其它重要的信息。摘要应具有独立性和自明性,并且拥有与文献同等量的主要信息,即不阅读全文,就能获得必要的信息。摘要不容赘言,故需逐字推敲。内容必须完整、具体、使人一目了然。英文摘要虽以中文摘要为基础,但要考虑到不能阅读中文的读者的需求,实质性的内容不能遗漏。
数学论文的格式和其他论文格式差不多。这是我获广东中山市三等奖的数学论文,供参考。保障一年级数学学业成绩经验点滴 [论文摘要]:近年来,中山市古镇镇小学阶段年度的期末考试成绩出现了这样的一个怪现象:一年级的数学成绩与其他年级相比,平均分一直居于下游,学困生占的比例也不小。本人通过提问学生及亲身教学经历从数学能力、数学习惯、心理因素三方面来分析导致成绩不理想的原因,并提出几点经验。[关键词]:数学能力 因素 经验近年来,中山市古镇镇小学阶段年度的期末考试成绩出现了这样的一个怪现象:一年级的数学成绩与其他年级相比,平均分一直居于下游,学困生占的比例也不小。按理说,试卷难度、题量与其他年级相比,差别并不大,试题的编排也不会超“课程标准”,导致成绩不理想的原因根源在哪?我们对一年级两个班的学生进行研究,具体做法是:在单元测试结束后,每班将学生分为优生、中等生、学困生三类,面批试卷,采取个别谈话形式,让他们自己根据错题分析出错原因,结果大致是:优生的原因分析 没细致审题,忘记检验,考试时间长中等生的原因分析 不理解题意,时间不够,计算出错学困生的原因分析 不识字,不会做通过上面的调查、提问和我们平时在实践教学中的观察、了解,我从数学能力、数学习惯、心理因素三方面来分析导致成绩不理想的原因:(一) 数学能力方面1、 认字能力不强 不理解题意, 《语文课程标准》中提到:认识常用汉字1600—1800字,其中800—1000字会写。对于刚刚入学的一年级学生来说,学生识字量不大,认字能力与理解能力还处于成长阶段,并且同年级的学生,认字与理解题意能力也因人而异。当数学试卷中出现了不认识的字时,部分学生做题的心理与思维会受到影响,有的学生还会“误解”题意,导致将题做错。比如,一年级下册期末练习测试卷中有这样一道题: 部分学生不认识“原”“卖掉”“剩”这几个字,导致有学生将本子算式列成“60—28=32”又比如:一年级下册中段测试卷中有这样一道题“和50相邻的数是( )和( )”如果学生不理解“相邻”的意思,或者把“相邻”误解成“相近”或“相似”等意思,那就很难把正确的数写出来。2、形成固定思维《数学课程标准》中提到:学生能根据观察、实验、归纳、类比等获得数学猜想,并进一步寻求证据,给出证明,举出反例。但在解决数学问题时,学生很容易对例题进行简单的模仿,忽略对题目数学信息的梳理和对数学过程及意义的理解,导致做错题目。如:女孩买了一个 ,找回17元,女孩付给售货员多少元?关于“人民币找钱”问题,教材例题运用的是减法,而这道题灵活地将数学信息调换。但是,有部分学生不能“举一反三”,依旧参照例题形式,用减法来解决,将算式列成:63—17=46(元)3、 应试技巧没掌握应试技巧主要指在应对考试时,考生为更好的解答各类题而采取的一些特殊的方法。应试技巧在考试中起了极大的作用。比如,在做题时,有的同学因为一道难题苦苦思索,坚持到底,最后时间不够,后面“一片空白”,导致失分惨重;也有的同学在面对选择题、连线题等类型题时,因为不能确定答案,就“留下空白”,类似这样的情况而失分的同学比比皆是,令人遗憾。(二) 数学习惯方面审题不细致,检验习惯没养成由于一年级学生的年龄以及心理特点具有特殊性,,他们还没有完全形成细致审题与再次细心检查的习惯。即使老师苦口婆心地一次次强调“认真审题,做完检查”,但大多数学生在真正测试时往往粗略地看了一遍题目后就开始答题,甚至有的学生根本没看题目就答题。比如:“把下面的数按从小到大的顺序排列”,有部分学生没审题,会把数按“从大到小”的顺序排列。在检查阶段,大部分学生虽然从头至尾地看了自己的答案与题目,但也没能比较好地发现错误。(三)心理因素1、态度 健康 注意力因素影响 一年级学生入学不久,学习态度还没有完全端正,学习责任心还不够强。遇到难题时,部分学生“知难而退”,不愿意动脑筋;还有的学生在考试时身体不舒服,如:肚子痛、想上厕所。这也会对他的成绩造成影响;有的学生在规定的一小时内,注意力不能较长时间集中,在测试过程中会发现学生会玩手指、玩橡皮而忘记答卷。2、依赖心理强对于一年级学生来说,他们的分析、思考、解决问题的能力,才刚起步。心理学研究表明,一年级学生学习的依赖心理强。而部分家长辅导时“坚守阵地”, “陪坐”身旁,只要发现孩子不会做题,就“义不容辞”,再三教导。家长的做法更加促进孩子的依赖性,导致学生在做试卷时,产生惧怕或抵抗心理。有一年级的孩子到我面前反映:“老师,我不喜欢考试。”我问其原因,孩子天真地回答:“考试的时候,我不会,没人教我;但在家里,父母会教我。”针对以上的种种问题,教师要想保障学生的期末学业成绩,根据我三年低年段的亲身教学实践经验和日常的观察,总结出了以下几点经验:(一)阅读的日常训练 数学同样离不开阅读,教师可以利用晨读、午读时间鼓励孩子多阅读,让孩子学会“置身于其境”。通过多阅读,增加学生识字量,提高想象能力。平时鼓励一年级学生通过绘声绘色地阅读,让自己“入情入境”,从而帮助孩子理解文章意思,进而更好地理解数学题意。(二)审题与检验习惯的日常训练 一年级的孩子就像一张白纸,你在上面画什么就收获什么。好习惯容易形成,不好的习惯也容易形成。因此,教师要把握一年级这关键期,把审题与检验习惯植根于孩子脑中,好习惯受用一生。在日常练习中,要与孩子一起读题,读到学生理解为止。教师读题时要注意语调的变化、声音高低、停顿,关注到后进学生。而且每次读题时都要强调:“认真读题,读到明白为止。” 计算时,告诉孩子“检验”就是计算的一部分,没有“检验”的计算是不完整的。教师还要采用奖励制度,激励能够检验的孩子。(三)应试技巧的日常训练在日常练习训练中,强调学生做题先易后难,合理分配时间,注意“抓大放小”,把握分值大和不费时的题。在单元测试过程中,老师要观察学生答题过程,特别关注后进生的答题情况。当发现哪个孩子不懂得技巧时,课后,老师要单独找他谈心,并通过多次训练,用各种机制表扬他,激发他的应试意识。(四)学习责任心的培养学生的学习态度决定学习状态及学习效果。责任,是一个人应该而且必须承担的义务;而责任心则是强制自己去承担这些义务的心理意识。对于一年级学生来说,培养责任心是当务之急。教师要利用班会,讲故事,家校联合,培养对孩子对自己对他人负责等办法,促进孩子的责任心进一步加强。(五)发散思维的培养为了培养学生的思维能力,扎实基础知识,提高学生解决问题的能力,不少教师采用题海战术,通过反复练习,使学生熟练掌握各种题型的答题技巧,这样的做法显然不符合新课改的要求。教师在日常教学中要注重知识的形成过程,以“生”为主体,多给学生表达的机会;还要针对不同层次学生“因材施教”,注意“培优扶差”,促使优生更优,后进生不掉队。(六)独立作业的培养在处理家庭作业时,家长应培养孩子独立作业的习惯。在遇到孩子不懂的问题时,我认为家长应做到以下几点:先鼓励孩子继续读题,理解题意,给孩子足够多的时间,让孩子进行多方位的思考。如果还不会做,要让孩子表达出哪一方面弄不懂,家长在这一方面进行一点点地暗示或启发,点到为止,然后继续让孩子再思考,当孩子解决出问题时就会收获成功的喜悦感,以后就会更加积极地动脑。总之,想要保障一年级学生的学业成绩,需要教师把工作落实在日常教学中的点点滴滴,这样学生才能养成良好的答题习惯。