期刊问答网 论文发表 期刊发表 期刊问答
  • 回答数

    2

  • 浏览数

    203

Ranchor
首页 > 期刊问答网 > 期刊问答 > 铁路供电系统日常运行要点论文

2个回答 默认排序1
  • 默认排序
  • 按时间排序

王一涵

已采纳
地方铁路运营管理模式及方案选择摘要:根据我国地方铁路近50年的建设管理经验,分析地方铁路的主要运营管理中委托国营铁路管理、委托区域内第三方集团(公司)管理和自主运营管理3种模式的优缺点。并以拟建的赤大白地方铁路为例,提出了地方铁路运营管理模式的方案选择建议。关键词:地方铁路;国营铁路;运营;管理模式;方案地方铁路是指由省、市、地区政府或者公司投资并进行经营管理的专有铁路,是国营铁路网的延伸和补充。地方铁路不仅可以缓解国营铁路运力紧张的压力,而且对完善铁路网结构和优化生产力布局具有重要意义。合理确定地方铁路运营管理模式可以达到以最少的投资、最佳的管理取得最好的经济效益的目的。1 地方铁路的运营管理模式我国地方铁路自20世纪50年代后期开始修建,在近半个世纪的建设过程中,地方铁路经历了崛起(1 95 8年一1 95 9年)、调整整顿(1960年一1965年)、发展(1966年一l975年)、徘徊(1976年~ 1980年)、蓬勃发展(1981年一1996年)、平稳发展(1997年~ 2003年)等阶段。至2003年底,全国地方铁路营业里程已近5 000 km。综合分析地方铁路近50年建设、管理的经验,地方铁路的主要运营管理模式可分为以下3种模式。1.1 委托国营铁路管理模式委托国营铁路管理模式的特点是由地方政府(公司)投资或融资修建线路,地方铁路作为国营铁路网支线,运输生产、组织及设备维护和维修由国营铁路统一管理。此种管理模式可以充分发挥地方铁路和路网联络线的双重功能。(1)委托国营铁路管理模式的优点:①地方铁路纳入整个铁路网,由国营铁路统一调度指挥,在完善铁路网络结构及优化生产力布局方面发挥一定作用;②地方铁路与国营铁路的信息系统按照统一规划、统一标准、统一制式、统一开发、统一应用的原则建设,减少重复开发及资金的投入;③机车车辆由国营铁路统一供给和维修,节省一次性投入;④避免地方铁路与国营铁路在车辆交接上的诸多环节;⑤在双方自主经营的前提下,签订经济合同以市场机制促进二者资源优化配置,形成相互协作、利益共享的统一体。(2)委托国营铁路管理模式的缺点:① 由于地方铁路的机车、车辆均由国营铁路提供,因此地方铁路运用车数量、车种、装车计划等受国营铁路约束,自主性差;② 不能直接控制运营成本,不利于地方铁路推行现代化企业管理。1.2 委托区域内第三方集团(公司)管理模式委托区域内第三方集团(公司)管理模式的特点是委托所建地方铁路区域内其他的合资铁路集团(公司)代管,由双方成立董事会或者共同管理机构,地方政府(公司)只保留产权或者连同产权一并交与合资铁路集团(公司),行政和业务也由其进行管理经营。这种模式借助合资铁路集团(公司)多年的经营管理实践和经验,可以充分发挥其资源优势。 (1)委托区域集团(公司)管理模式的优点:①地方铁路与区域集团(公司)处同一省区,有地域优势,能充分发挥区域内铁路集团(公司)现有企业和人力资源优势;②便于在运输组织上的协调,减少车辆交接作业的环节;③两者的企业管理体制相似,便于双方协作和利益共享。(2)委托区域集团(公司)管理模式的缺点:① 由于受区域集团(公司)代管,地方铁路的日常运营及车流组织调配、调整受区域公司和国营铁路两家控制,灵活性差、自主性小;②不能直接控制运营成本,不利于地方铁路推行现代化企业管理制度。1.3 自主运营管理模式自主运营管理模式是集贷款、建设、运营、还贷于一体的企业管理模式,成立地方铁路(有限责任)公司,形成产、供、销、运一体化的自营铁路,独立经营管理、自负盈亏,业务上接受国营铁路的指导和帮助。这种运营管理模式可以建立按国营铁路技术标准管理、按地方铁路经营的管理体制。(1) 自主运营管理模式的优点:① 自营管理模式具有行业特色;②分工明确,权责分明,能充分利用线路的运输能力;③便于企业内部组织管理、企业成本控制、完善企业各种规章制度;④ 各信息系统在接口标准要求下可以充分满足地方铁路内部特殊性需要,系统建设周期短;⑤有利于引入竞争机制,通过制定合理的运价,促进市场营销,形成独立的经营实体,从而达到企业效益和社会效益的实现。(2) 自主运营管理模式的缺地方铁路运营管理模式及方案选择 马建义等点:①存在地方铁路与国营铁路等在车辆交接上的多环节和运输组织的不协调,以及业务技术标准的不适应;②公司内部子公司较多,管理跨度大;③ 自营管理模式一次投入大,缺乏运营管理经验。2 地方铁路运营管理模式的方案选择地方铁路运营管理模式的选择是多因素、多目标、多比选的决策论证过程,必须做到因地制宜和因需制宜。现以拟建的赤峰经大板至白音华地方铁路(以下简称赤大白地方铁路)为例,确定地方铁路运营管理模式的方案选择。2.1 赤大白地方铁路基本概述赤大白地方铁路位于内蒙古自治区赤峰市和锡林郭勒盟西乌珠穆沁旗境内,是由中国电力投资集团公司、霍煤集团和内蒙电力公司共同投资建设的地方铁路。线路南起国营铁路京通线赤峰站,向北经赤峰市的松山区、翁牛特旗乌丹镇至集通铁路的大板站,再向西北延伸到本线终点白音华,正线全长约373 km。线路向北连接白音华煤田和内蒙古锡盟等内陆沿边地区,向南直达辽西、辽南等沿海地区,形成沟通集通铁路和京通铁路的路网联络线,在路网中起重要的联络和辅助作用,并成为内蒙古中东部至京山铁路、锦州港的便捷出海大通道,远景随着中蒙口岸的发展,将成为珠恩嘎达至赤峰国际铁路大通道的重要组成部分,形成新的欧亚大陆桥,促进国际往来。2.2 赤大白地方铁路运营管理模式的建议。拟建的赤大白地方铁路接轨方案涉及集通铁路有限责任公司管辖的集通线和沈阳铁路局管辖的国营铁路。集通线与赤大白同处内蒙古地区,有地域优势,两线运量构成中,煤炭运输均占有重要地位,主要车流集散于本区域铁路,能充分发挥集通公司现有企业和人力资源优势。若赤大白地方铁路采用由集通公司代管,则其日常运营及车流组织调配受集通公司和国营铁路控制,灵活性差、自主性小。而国营铁路在本区域处于垄断地位,由其代管,则束缚程度高,不利于公司增强竞争力。鉴于赤大白地方铁路所处的地理位置和其服务对象的特点,借鉴目前国内徐沛铁路采用自主运营取得的经济效益和货运量不断增长的成功经验,建议赤大白地方铁路采用自主运营的模式。这种模式有利于企业加强管理意识,推行企业股份制改造,建立现代企业制度,形成适应运输市场竞争的独立完整合理的经营实体,使公司具有长久发展潜力,并且也符合市场经济条件下公司的发展方向,同时承担和发挥路网联络线作用,满足国防需求,为国家及当地经济建设创造更大的效益。参考文献:[1]韩浚.地方铁路发展问题探讨[J].铁道经济研究,1997(2):29-30.[2]杨梅潮,王民选.河南地方铁路发展战略初探[J].河南交通科技,2001(2):60—62.[3]洪雁.地方铁路发展之我见[J].铁道运输与经济,1999(4):31-33.

铁路供电系统日常运行要点论文

303 评论(8)

郭静红

电气化铁道电能质量综合控制研究 摘要:作为典型的非平衡负载,电气化铁道的牵引负载给公共电网带来的谐波、负序和无功等电能质量问题不 容忽视。静止无功补偿装置(SVC)是一种减小甚至消除无功、谐波以及其他电能质量问题的有效方法。以静止 无功补偿器(SVC)为基础,对电气化铁道的电能质量问题的综合控制进行研究。 关键词:电气化铁道;电网;电能质量;综合控制 1 前言 中国的电气化铁道总里程已经突破2·4万公里, 跃居世界第二。电气化铁道具有运载能力强、行车速 度快、节约能源、对环境污染小等优点,在现代国民经 济发展中起着举足轻重的作用。 但是,由于电气化铁道牵引负载所具有的随即波 动性和不对称性,其给公共电网带来的诸如负序电流、 谐波以及无功功率等电能质量问题也引起了极大的关 注。研究如何利用有效手段治理电气化铁道牵引负载 所带来的一系列电能质量问题,确保电网中其他电力 设备的安全经济运行具有重大意义。 2 电气化铁道牵引供电系统 2·1 概述 我国的动力供电电网电压一般为110kV或者 220kV,通过牵引变压器转换为27·5kV作为牵引动力 机车的供电。现在普遍流行的牵引变压器种类主要有 单相牵引变压器、Y-D11牵引变压器、阻抗匹配牵引 变压器、Scott变压器等。我国电气化铁道采用工频交 流50Hz三相供电单相用电,其负荷牵引电力机车的 功率大,速度、负载状况变化频繁,且具有不对称的特 性,导致牵引电网具有功率因数低、谐波含量高、负序 电流大等特点,不但自身损耗大,而且对公共电网及铁 路沿线的其他电力设备也带来严重危害,必须采取有 效措施加以治理[1]。 2·2 单相变压器牵引供电网 采用单相牵引变压器的牵引供电系统拓扑结构如 图1所示[2]。 单相接线牵引网采用单相变压器供电,供电方式 又分为单相接线方式和V-V接线方式。单相接线牵 引变压器的原边跨接于三相电力系统中的两相;副边 一端与牵引侧母线连接,另一端与轨道及接地网连接。 牵引变压器的容量利用率高,但其在电力系统中单相 牵引负荷产生的负序电流较大,对接触网的供电不能 实现双边供电。所以,这种结线只适用于电力系统容 量较大,电力网比较发达,三相负荷用电能够可靠地由 地方电网得到供应的场合。另外,单相牵引变压器要 按全绝缘设计制造。而单相V-V接线将两台单相变 压器以V的方式联于三相电力系统每一个牵引变电 所都可以实现由三相系统的两相线电压供电。两变压 器次边绕组,各取一端联至牵引变电所两相母线上。 而它们的另一端则以联成公共端的方式接至钢轨引回 的回流线。这时,两臂电压相位差60°接线,电流的不 对称度有所减少。这种接线即通常所说的60°接线。 2·3 三相Y-D11变压器牵引供电网 采用三相Y-D11牵引变压器的牵引供电系统拓 扑结构如图2所示[2]。 三相Y-D11结线牵引变压器的高压侧通过引入 线按规定次序接到110kV或220kV,三相电力系统的高 压输电线上;变压器低压侧的一角c与轨道,接地网连 接,变压器另两个角a和b分别接到27·5kV的a相和b 相母线上。由两相牵引母线分别向两侧对应的供电臂 供电,两臂电压的相位差为60°,也是60°接线。因此,在 这两个相邻的接触网区段间采用了分相绝缘器。 3 SVC静止型动态无功补偿装置 3·1 SVC的发展 静止型动态无功补偿装置SVC是一种先进的高 压电网动态功率因数补偿装置。它通过提高功率因数 来节约大量的电能,同时又起到减少电网谐波、稳定电 压、改善电网质量(环境)的作用。20世纪70年代以 来,以晶闸管控制的电抗器(TCR)、晶闸管投切的电容 器(TSC)以及二者的混合装置(TCR+TSC)等主要形 式组成的静止无功补偿器(SVC)得到快速发展。SVC 可以看成是电纳值能调节的无功元件,它依靠电力电 子器件开关来实现无功调节。SVC作为系统补偿时可 以连续调节并与系统进行无功功率交换,同时还具有 较快的响应速度,它能够维持端电压恒定 3·2 SVC的工作原理及在电网中应用 TCR+TSC型SVC的基本拓扑结构见图3。它由 1台TCR、2台TSC以及2个无源滤波器组成,在实际 系统中,TSC及无源滤波的组数可根据需要设置。 TCR的工作原理是通过控制与相控电抗器连接 的反并联晶闸管对的移相触发脉冲来改变电抗器等效 电纳的大小,从而输出连续可变的无功功率。图3中 两个晶闸管分别按照单相半波交流开关运行,通过改 变控制角α可以改变电感中通过的电流。α的计量以 电压过零点为基准,α在90°~180°之间可部分导通, 导通角增大则电流基波分量减小,等价于用增大电抗 器的电抗来减小基波无功功率。导通角在90°~180° 之间连续调节时电流也从额定到0连续变化,TCR提 供的补偿电流中含有谐波分量[3]。 TSC的工作原理是根据负载感性无功功率的变化 通过反并联晶闸管对来切除或者投入电容器。这里, 晶闸管只是作为投切开关,而不像TCR中的晶闸管起 相控作用。在实际系统中,每个电容器组都要串联一 个阻尼电抗器,以降低非正常运行状态下产生的对晶 闸管的冲击电流值,同时避免与系统产生谐振。用晶 闸管投切电容器组时,通常选取系统电压峰值时或者 过零点时作为投切动作的必要条件。由于TSC中的 电容器只是在两个极端的电流值之间切换,因此它不 会产生谐波,但它对无功功率的补偿是阶跃的。 TCR和TSC组合后的运行原理为:当系统电压低 于设定的运行电压时,根据需要补偿的无功量投入适 当组数的电容器组,并略有一点正偏差(过补偿),此 时再利用TCR调节输出的感性无功功率来抵消这部 分过补偿容性无功;当系统电压高于设定电压时,则切 除所有电容器组,只留有TCR运行。 4 电网电能质量综合控制与治理 4·1 谐波抑止与无功补偿 利用SVC动态无功补偿装置对牵引供电系统的 谐波和无功进行综合治理的关键是SVC最大无功补 偿量的确定和滤波器支路的设计[3]。 SVC最大无功补偿量Qsvc应该和设计线路牵引负 荷的大小相适应,应该按电气化铁道牵引负荷的最大 有功需求以及补偿后对装设地点功率因数或在最大无 功冲击时的最大电压损耗的要求来确定,具体可以按 照式(1)、(2)来计算。 QSVC=(tanφ1-tanφ2)Pmax(1) 式中,φ1、φ2分别为补偿前后110kV电源测功率 因数角;Pmax为电铁负荷最大有功需求。 QSVC=Qfmax-ΔU%Xs(2) 式中,Qfmax为装设地点最大无功冲击;ΔU%为装 设地点最大电压损耗要求;Xs为系统阻抗。 要想达到理想的谐波抑止效果,必须综合考虑FC 滤波支路的设计,既要保证装置的安全运行,又要达到 预计的理想效果。在实际设计中,首先需要根据供电 臂中所含的谐波分量来确定FC滤波支路的组成。由 于在电力牵引负荷的谐波中, 3、5、7次谐波占了很大 的比重,所以FC滤波支路一般由3、5、7次单调谐滤 波器构成。 当最大无功补偿容量和滤波支路的组成确定后, 如何将需补无功容量合理分配到各滤波支路中,这是 非常重要的问题。如果各滤波支路的容量分配不合 理,一方面会使设备安装总容量偏大,另一方面有可能 因为某此滤波回路补偿功率偏小而发生过负荷,对设 备安全运行造成影响。 一些著名的电气公司采用的一些算法如下[6]: 如西门子公司的无功功率补偿按式(3)分配 Qc(h)=QSVCIh/h∑Ih/h(3) 式中,Qc(h)是第h次滤波支路分配的补偿容量;Ih 为供电臂第h次谐波电流。 BBC电气公司按照式(4)分配无功功率 Qc(h)=QSVC∑Ih(4) AEG电气公司则按照式(5)分配无功 Qc(3)∶Qc(5)∶Qc(11)∶Qc(13)=2∶2∶1∶1 (5) 式中,Qc(3)、Qc(5)、Qc(11)、Qc(13)分别为第3、5、11、 13次滤波支路分配的补偿容量。 4·2 负序电流补偿 牵引电力机车产生的大量负序电流给电网中其他 的电力设备的安全、经济运行带来极大影响。SVC静 止动态无功补偿装置在补偿负序和末端电压上有着相 当高的效率。工程应用上可以选择在电网系统和负荷 上都安装SVC[5]。 在电网系统端安装应用SVC来补偿负序电流的 原则是参照斯坦梅茨法则(Steinmetz′s laws)。不管采 用哪一种牵引变压器,负序补偿的实现分为如下两步: (1)电力因数修正。通过安装电容器件,使得每 相负荷都为电阻性。 (2)参照斯坦梅茨法则(Steinmetz′s laws),AB相 的电阻性负荷G,与BC相的电容性负荷G/ 3以及CA 相的电感性负荷G/ 3互相对称。 电流环路图和相位图分别如图4、5所示: 从图5可以明显看到线电流I·A,I·B,I·C是对称 且正序的,BC相和CA相之间的阻抗负载也可以做到 类似的对称,因此系统中的所有负序电流都可以被补 偿而消除。 现在问题的关键是如何随着牵引负荷的起伏动态 地控制补偿需要的电容和电感器组。急于数字信号处 理器(DSP)的固定电容(FC)和晶闸管控制的电抗器 (TCR)的组合得以广泛应用,如图6所示。得益于 DSP对数据信息的快速处理,补偿所需的电容和电感 参数可以被快速、精确计算得到。 5 结论与展望 本文提出的基于静止动态无功补偿装置(SVC)的 电气化铁道牵引电网电能质量综合控制与治理原理与 方案具有重要的工程意义。电气化铁道的电能质量是 一个突出且严峻的课题与难题,要求我们不断探求新 的综合补偿方法,来综合控制与治理影响电能质量的 无功、谐波、负序等因素,以提高电网电能质量,确保电 网安全、经济运行。 参考文献 [1] 李群湛电气化铁道并联综合补偿及其应用[M]北京:中国铁道 出版社, [2] TB/10009-2005铁路电力牵引供电设计规范[S] [3] 王兆安谐波抑止和无功功率补偿[M]北京:机械工业出版社, [4] 铁道部电气化工程局电气化勘测设计院电气化铁道设计手册牵 引供电系统[M]北京:中国铁道出版社, [5] 安鹏,张雷,刘玉田电气化铁道对电力系统安全运行的影响及对 策[J]山东电力技术, 2005, (4): 16- [6] 马千里动态无功补偿装置在牵引变电所的应用[J]电气化铁 道, 2008(4)希望采纳
351 评论(10)

相关问答