lhj_2009
我也正好在做这个作业,不过为什么不能超出初一生的思想和知识?????? 
身边的数学--------------------------------------------------------------------------------用天平称物品的学问��我们先来研究一下只许在天平的一边盘上放砝码,要求一次称出物品重量的情况。��例如:在天平的一边盘上放砝码,要把1克到3O克整克重的物品,都能一次性地分别称出来,至少要备置几个什么样的砝码?��要“一次性”称出,又要做到砝码的个数“少”,各个砝码的克数不要相同,能将几个砝码拼凑成要称的重量,就尽量拼凑。��显然,1克、2克的砝码是不可少的。1+2=3(克),3克的砝码可以不要。利用1克、2克的砝码各一个,无论怎么也不能一次称出4克的重量,必须要有一个4克砝码。有了4克的砝码,再配上1克、2克的砝码,就能分别称出5克、6克、7克的重量来。顺着这个思路,我们模拟天平称物的情况,制得下表:放置砝码(克) 称出物品重量(克)1 12 23+1 34 44+1 54+2 64+2+1 78 8…… ……8+4+2+1 1516 16…… ……16+8+4+2 3016+8+4+2+1 31��从表中可以看出,称3O克重量的物品时,用了4个砝码;但要分别称出1克到3O克的整克重量的物品时,需准备的砝码应该是5个,即1克、2克、4克、8克、16克,并且利用这5个砝码的最大称重量是1+2+4+8+16=31(克)。��找一找,l克、2克、4克、8克、16克这5个按从轻到重的顺序排列的砝码之间有什么关系?我们不难发现,相邻的两个砝码的重量,较重的是较轻的2倍。由此可知,只许在天平一边盘上放砝码,并且要求一次性分别称出1克至若干千克整克重的物品,至少需备置的各个砝码的重量,第1个是1克,其余可依次按“2倍法”得出。密铺的学问��地砖的形状往往是正方形的,也有长方形的,我们还见过正六边形的地砖。无论是正方形、长方形、还是正六边形的地砖,都可以将一块地面的中间不留空隙、也不重叠地铺满,也就是密铺。还有什么形状的图形可以密铺地面呢?同学们在思考这一问题时总是借助于画出的图形去实验,通过实际观察而得出结论。��其实用地砖铺地这一生活问题也有数学方面的道理,可以用数学中学到的圆周角是36O度这一知识从理论上分析、解决。��我们都知道,铺地时要把地面铺满,地砖与地砖之间就不能留有空隙。如果用的地砖是正方形,它的每个角都是直角,那么4个正方形拼在一起,在公共顶点处的4个角,正好拼成一个36O度的周角。正六边形的每个角都是120度, 3个正六边形拼在一起时,在公共顶点上的3个角度数的和正好也是36O度。除了正方形、长方形以外,正三角形也能把地面密铺。因为正三角形的每个内角都是6O度,6个正三角形拼在一起时,在公共顶点处的6个角的度数和正好是36O度。��正因为正方形、正六边形拼合以后,在公共顶点上几个角度数的和正好是36O度,这就保证了能把地面密铺,而且还比较美观。��还有什么形状的图形可以密铺地面呢?你现在会从数学的角度回答这个问题吗?试试看?
我学习数学已经有六年多了,这条学习的道路是坎坷的,是困难重重的。 记得在小学三、四年级时,我的数学成绩不证明好,总是在八十多分上下浮动,或许是因为我心里比较害怕数学对这一学科有抵触情绪。到了六年级时面对着严峻的毕业考试,我才不得不硬着头皮去认真学习数学。直到那时,我才发现,原来数学并不像我想象中的那么可怕。我也才发现,数学其实是所有科目中最有趣的一科。进入中学以后,我才真正发现了数学的神奇。它可以给我们带来无穷的乐趣。我在小学的数学基础又弄懂了许许多多的知识:代数式、有理数、整式、一元一次方程、二元一次方程组……在学习的过程中,难免会遇到一些挫折,由于自己的一点儿不慎而造成的遗憾,更是数不胜数。那些调皮的小精灵们利用你的一点儿弱点或缺陷,让你一败涂地。 在数学上,我最大的缺点是粗心。正是由于粗心,使我多次单元测试的成绩不尽人意;正是由于粗心,使我在期中考试中与年段第一名失之交臂,正是由于粗心,使我在各科的竞赛中成绩不佳……或许还有许多许多由粗心造成的遗憾,已消失在我的脑海中了。令我最苦恼的,也正是无法彻底地改掉粗心这个缺点。在这次数学期末考试中,我又重犯了粗心的毛病,马马虎虎,致使我的数学成绩比年段最好成绩低了6分之多。虽然,我知道只有改掉这个缺点,我的数学成绩才能有明显的提高,但是,至今我还无法彻底改掉这个缺点。 我相信,以我真正的实力,学好数学不是不可能的。但是,不知道为什么,课内学习数学、做作业,我还能对付。可我一拿起课外的数学书,总觉挺难的,看不懂,尤其是几何图形方面,难以弄明。
我们身边的数学 数学小论文 我们身边的数学无处不在。有了数学,才有了建筑,才有了交易。。。。。。数学可以说是带来了我们生活的一切。当我们在休闲的时候,就已神奇地接触到数学了。 我们经常用纸牌来玩“24点”的游戏,这个游戏使我们在休闲娱乐的同时也用到了数学。规则很简单:我们任意摸出4张牌,然后通过加减乘除四则运算,必要时也可使用括号,把这4个数连成算式,并使答案为24。排算式时,4张纸牌显示出的四个数必须都要用上,并且只能用一次。例如四张纸牌显示出的四个数分别是3,4,4,6,若排成4乘6等于24或3加4加4加6加4再加3等于24,都不行,虽然符合答案等于24这个条件,但却不符合其他条件,那也没用。但当排成4乘6乘(4减3)等于24或3乘4乘(6减4)等于24就对了。再例如四张纸牌显示出的4个数分别是3,3,7,大家略看时会觉得这解不出来,甚至可能会说这根本不能解。但是,在这看似绝境的题目中却存在着‘‘救生’’之路:(3+7分之3)乘7=24。瞧,这不就解出来了吗?所以说,数学就是那么神奇啊。可能还有更多的解法,那就需要人们去仔细思考,去解出了。在玩“24点”游戏时,有时拼得快,有时拼得慢,这就关系到你对数学的运算程度了。而选用‘‘24’’来作为游戏的“主人公”的原因也离不开数学,其原因是24有1,2,3,4,6,8,12,24这8个约数,而其他数:20,21,22,23等的约数都少于这普普通通的纸牌游戏却蕴含着这么多 “数学”,有怎能不说,数学就在我们身边,数学就是我们生活的需要。但是,这数学的神奇还是需要用心去创造的。