ZQ精密
在果蔬深加工中,可以用生物技术护色。果蔬加工过程中发生的褐变包括:非酶褐变和酶促褐变。非酶褐变主要有羰氨反应、焦糖化反应、抗坏血酸氧化和单宁与金属离子的显色等。酶促褐变是多酚氧化酶等作用于香蕉中的酚类物质生成有色产物的结果。 
基因工程genetic engineering 基因工程又称基因拼接技术和DNA重组技术,是以分子遗传学为理论基础, 以分子生物学和微生物学的现代方法为手段, 将不同来源的基因(DNA分子),按预先设计的蓝图, 在体外构建杂种DNA分子, 然后导入活细胞, 以改变生物原有的遗传特性、获得新品种、 生产新产品。基因工程技术为基因的结构和功能的研究提供了有力的手段。 什么是基因工程?【简介】 基因工程是生物工程的一个重要分支,它和细胞工程、酶工程、蛋白质工程和微生物工程共同组成了生物工程。 所谓基因工程(genetic engineering)是在分子水平上对基因进行操作的复杂技术,是将外源基因通过体外重组后导入受体细胞内,使这个基因能在受体细胞内复制、转录、翻译表达的操作。它是用人为的方法将所需要的某一供体生物的遗传物质——DNA大分子提取出来,在离体条件下用适当的工具酶进行切割后,把它与作为载体的DNA分子连接起来,然后与载体一起导入某一更易生长、繁殖的受体细胞中,以让外源物质在其中“安家落户”,进行正常的复制和表达,从而获得新物种的一种崭新技术。 基因工程是在分子生物学和分子遗传学综合发展基础上于本世纪70年代诞生的一门崭新的生物技术科学。一般来说,基因工程是指在基因水平上的遗传工程,它是用人为方法将所需要的某一供体生物的遗传物质--DNA大分子提取出来,在离体条件下用适当的工具酶进行切割后,把它与作为载体的DNA分子连接起来,然后与载体一起导入某一更易生长、繁殖的受体细胞中,以让外源遗传物质在其中"安家落户",进行正常复制和表达,从而获得新物种的一种崭新的育种技术。 这个定义表明,基因工程具有以下几个重要特征:首先,外源核酸分子在不同的寄主生物中进行繁殖,能够跨越天然物种屏障,把来自任何一种生物的基因放置到新的生物中,而这种生物可以与原来生物毫无亲缘关系,这种能力是基因工程的第一个重要特征。第二个特征是,一种确定的DNA小片段在新的寄主细胞中进行扩增,这样实现很少量DNA样品"拷贝"出大量的DNA,而且是大量没有污染任何其它DNA序列的、绝对纯净的DNA分子群体。科学家将改变人类生殖细胞DNA的技术称为“基因系治疗”(germlinetherapy),通常所说的“基因工程”则是针对改变动植物生殖细胞的。无论称谓如何,改变个体生殖细胞的DNA都将可能使其后代发生同样的改变。 迄今为止,基因工程还没有用于人体,但已在从细菌到家畜的几乎所有非人生命物体上做了实验,并取得了成功。事实上,所有用于治疗糖尿病的胰岛素都来自一种细菌,其DNA中被插入人类可产生胰岛素的基因,细菌便可自行复制胰岛素。基因工程技术使得许多植物具有了抗病虫害和抗除草剂的能力;在美国,大约有一半的大豆和四分之一的玉米都是转基因的。目前,是否该在农业中采用转基因动植物已成为人们争论的焦点:支持者认为,转基因的农产品更容易生长,也含有更多的营养(甚至药物),有助于减缓世界范围内的饥荒和疾病;而反对者则认为,在农产品中引入新的基因会产生副作用,尤其是会破坏环境。 诚然,仍有许多基因的功能及其协同工作的方式不为人类所知,但想到利用基因工程可使番茄具有抗癌作用、使鲑鱼长得比自然界中的大几倍、使宠物不再会引起过敏,许多人便希望也可以对人类基因做类似的修改。毕竟,胚胎遗传病筛查、基因修复和基因工程等技术不仅可用于治疗疾病,也为改变诸如眼睛的颜色、智力等其他人类特性提供了可能。目前我们还远不能设计定做我们的后代,但已有借助胚胎遗传病筛查技术培育人们需求的身体特性的例子。比如,运用此技术,可使患儿的父母生一个和患儿骨髓匹配的孩子,然后再通过骨髓移植来治愈患儿。 随着DNA的内部结构和遗传机制的秘密一点一点呈现在人们眼前,特别是当人们了解到遗传密码是由 RNA转录表达的以后,生物学家不再仅仅满足于探索、提示生物遗传的秘密,而是开始跃跃欲试,设想在分子的水平上去干预生物的遗传特性。 如果将一种生物的 DNA中的某个遗传密码片断连接到另外一种生物的DNA链上去,将DNA重新组织一下,就可以按照人类的愿望,设计出新的遗传物质并创造出新的生物类型,这与过去培育生物繁殖后代的传统做法完全不同。 这种做法就像技术科学的工程设计,按照人类的需要把这种生物的这个“基因”与那种生物的那个“基因”重新“施工”,“组装”成新的基因组合,创造出新的生物。这种完全按照人的意愿,由重新组装基因到新生物产生的生物科学技术,就称为“基因工程”,或者说是“遗传工程”。 【基因工程的基本操作步骤】 基因工程步骤 获取目的基因是实施基因工程的第一步。 基因表达载体的构建是实施基因工程的第二步,也是基因工程的核心。 将目的基因导入受体细胞是实施基因工程的第三步。 目的基因导入受体细胞后,是否可以稳定维持和表达其遗传特性,只有通过检测与鉴定才能知道。这是基因工程的第四步工作。 基因工程的前景科学界预言,21世纪是一个基因工程世纪。基因工程是在分子水平对生物遗传作人为干预,要认识它,我们先从生物工程谈起:生物工程又称生物技术,是一门应用现代生命科学原理和信息及化工等技术,利用活细胞或其产生的酶来对廉价原材料进行不同程度的加工,提供大量有用产品的综合性工程技术。 生物工程的基础是现代生命科学、技术科学和信息科学。生物工程的主要产品是为社会提供大量优质发酵产品,例如生化药物、化工原料、能源、生物防治剂以及食品和饮料,还可以为人类提供治理环境、提取金属、临床诊断、基因治疗和改良农作物品种等社会服务。 生物工程主要有基因工程、细胞工程、酶工程、蛋白质工程和微生物工程等5个部分。其中基因工程就是人们对生物基因进行改造,利用生物生产人们想要的特殊产品。随着DNA的内部结构和遗传机制的秘密一点一点呈现在人们眼前,生物学家不再仅仅满足于探索、提示生物遗传的秘密,而是开始跃跃欲试,设想在分子的水平上去干预生物的遗传特性。 美国的吉尔伯特是碱基排列分析法的创始人,他率先支持人类基因组工程 如果将一种生物的DNA中的某个遗传密码片断连接到另外一种生物的DNA链上去,将DNA重新组织一下,不就可以按照人类的愿望,设计出新的遗传物质并创造出新的生物类型吗?这与过去培育生物繁殖后代的传统做法完全不同,它很像技术科学的工程设计,即按照人类的需要把这种生物的这个“基因”与那种生物的那个“基因”重新“施工”,“组装”成新的基因组合,创造出新的生物。这种完全按照人的意愿,由重新组装基因到新生物产生的生物科学技术,就被称为“基因工程”,或者称之为“遗传工程”。 人类基因工程走过的主要历程怎样呢?1866年,奥地利遗传学家孟德尔神父发现生物的遗传基因规律;1868年,瑞士生物学家弗里德里希发现细胞核内存有酸性和蛋白质两个部分。酸性部分就是后来的所谓的DNA;1882年,德国胚胎学家瓦尔特弗莱明在研究蝾螈细胞时发现细胞核内的包含有大量的分裂的线状物体,也就是后来的染色体;1944年,美国科研人员证明DNA是大多数有机体的遗传原料,而不是蛋白质;1953年,美国生化学家华森和英国物理学家克里克宣布他们发现了DNA的双螺旋结果,奠下了基因工程的基础;1980年,第一只经过基因改造的老鼠诞生;1996年,第一只克隆羊诞生;1999年,美国科学家破解了人类第 22组基因排序列图;未来的计划是可以根据基因图有针对性地对有关病症下药。 人类基因组研究是一项生命科学的基础性研究。有科学家把基因组图谱看成是指路图,或化学中的元素周期表;也有科学家把基因组图谱比作字典,但不论是从哪个角度去阐释,破解人类自身基因密码,以促进人类健康、预防疾病、延长寿命,其应用前景都是极其美好的。人类10万个基因的信息以及相应的染色体位置被破译后,破译人类和动植物的基因密码,为攻克疾病和提高农作物产量开拓了广阔的前景。将成为医学和生物制药产业知识和技术创新的源泉。美国的贝克维兹正在观察器皿中的菌落,他曾对人类基因组工程提出警告。 科学研究证明,一些困扰人类健康的主要疾病,例如心脑血管疾病、糖尿病、肝病、癌症等都与基因有关。依据已经破译的基因序列和功能,找出这些基因并针对相应的病变区位进行药物筛选,甚至基于已有的基因知识来设计新药,就能“有的放矢”地修补或替换这些病变的基因,从而根治顽症。基因药物将成为21世纪医药中的耀眼明星。基因研究不仅能够为筛选和研制新药提供基础数据,也为利用基因进行检测、预防和治疗疾病提供了可能。比如,有同样生活习惯和生活环境的人,由于具有不同基因序列,对同一种病的易感性就大不一样。明显的例子有,同为吸烟人群,有人就易患肺癌,有人则不然。医生会根据各人不同的基因序列给予因人而异的指导,使其养成科学合理的生活习惯,最大可能地预防疾病。 人类基因工程的开展使破译人类全部DNA指日可待。 基因工程将破译DNA 信息技术的发展改变了人类的生活方式,而基因工程的突破将帮助人类延年益寿。目前,一些国家人口的平均寿命已突破80岁,中国也突破了70岁。有科学家预言,随着癌症、心脑血管疾病等顽症的有效攻克,在2020至2030年间,可能出现人口平均寿命突破100岁的国家。到2050年,人类的平均寿命将达到90至95岁。 人类将挑战生命科学的极限。1953年2月的一天,英国科学家弗朗西斯·克里克宣布:我们已经发现了生命的秘密。他发现DNA是一种存在于细胞核中的双螺旋分子,决定了生物的遗传。有趣的是,这位科学家是在剑桥的一家酒吧宣布了这一重大科学发现的。破译人类和动植物的基因密码,为攻克疾病和提高农作物产量开拓了广阔的前景。1987年,美国科学家提出了“人类基因组计划”,目标是确定人类的全部遗传信息,确定人的基因在23对染色体上的具体位置,查清每个基因核苷酸的顺序,建立人类基因库。1999年,人的第22对染色体的基因密码被破译,“人类基因组计划”迈出了成功的一步。可以预见,在今后的四分之一世纪里,科学家们就可能揭示人类大约5000种基因遗传病的致病基因,从而为癌症、糖尿病、心脏病、血友病等致命疾病找到基因疗法。 继2000年6月26日科学家公布人类基因组"工作框架图"之后,中、美、日、德、法、英等6国科学家和美国塞莱拉公司2001年2月12日联合公布人类基因组图谱及初步分析结果。这次公布的人类基因组图谱是在原"工作框架图"的基础上,经过整理、分类和排列后得到的,它更加准确、清晰、完整。人类基因组蕴涵有人类生、老、病、死的绝大多数遗传信息,破译它将为疾病的诊断、新药物的研制和新疗法的探索带来一场革命。人类基因组图谱及初步分析结果的公布将对生命科学和生物技术的发展起到重要的推动作用。随着人类基因组研究工作的进一步深入,生命科学和生物技术将随着新的世纪进入新的纪元。 克隆羊多利 基因工程在20世纪取得了很大的进展,这至少有两个有力的证明。一是转基因动植物,一是克隆技术。转基因动植物由于植入了新的基因,使得动植物具有了原先没有的全新的性状,这引起了一场农业革命。如今,转基因技术已经开始广泛应用,如抗虫西红柿、生长迅速的鲫鱼等。1997年世界十大科技突破之首是克隆羊的诞生。这只叫“多利”母绵羊是第一只通过无性繁殖产生的哺乳动物,它完全秉承了给予它细胞核的那只母羊的遗传基因。“克隆”一时间成为人们注目的焦点。尽管有着伦理和社会方面的忧虑,但生物技术的巨大进步使人类对未来的想象有了更广阔的空间。 基因工程大事记 1860至1870年 奥地利学者孟德尔根据豌豆杂交实验提出遗传因子概念,并总结出孟德尔遗传定律。 1909年 丹麦植物学家和遗传学家约翰逊首次提出“基因”这一名词,用以表达孟德尔的遗传因子概念。 1944年 3位美国科学家分离出细菌的DNA(脱氧核糖核酸),并发现DNA是携带生命遗传物质的分子。 1953年 美国人沃森和英国人克里克通过实验提出了DNA分子的双螺旋模型。 1969年 科学家成功分离出第一个基因。 1980年 科学家首次培育出世界第一个转基因动物转基因小鼠。 1983年 科学家首次培育出世界第一个转基因植物转基因烟草。 1988年 KMullis发明了PCR技术。 1990年10月 被誉为生命科学“阿波罗登月计划”的国际人类基因组计划启动。 1998年 一批科学家在美国罗克威尔组建塞莱拉遗传公司,与国际人类基因组计划展开竞争。 1998年12月 一种小线虫完整基因组序列的测定工作宣告完成,这是科学家第一次绘出多细胞动物的基因组图谱。 1999年9月 中国获准加入人类基因组计划,负责测定人类基因组全部序列的1%。中国是继美、英、日、德、法之后第6个国际人类基因组计划参与国,也是参与这一计划的惟一发展中国家。 1999年12月1日 国际人类基因组计划联合研究小组宣布,完整破译出人体第22对染色体的遗传密码,这是人类首次成功地完成人体染色体完整基因序列的测定。 2000年4月6日 美国塞莱拉公司宣布破译出一名实验者的完整遗传密码,但遭到不少科学家的质疑。 2000年4月底 中国科学家按照国际人类基因组计划的部署,完成了1%人类基因组的工作框架图。 2000年5月8日 德、日等国科学家宣布,已基本完成了人体第21对染色体的测序工作。 2000年6月26日 科学家公布人类基因组工作草图,标志着人类在解读自身“生命之书”的路上迈出了重要一步。 2000年12月14日 美英等国科学家宣布绘出拟南芥基因组的完整图谱,这是人类首次全部破译出一种植物的基因序列。 2001年2月12日 中、美、日、德、法、英6国科学家和美国塞莱拉公司联合公布人类基因组图谱及初步分析结果。 科学家首次公布人类基因组草图“基因信息”。
1 蛋白酶的生物学特点 蛋白酶是微生物产生的一类具有蛋白水解活性的酶,许多皮肤真菌可分泌蛋白酶,如须癣毛癣菌、红色毛癣菌、鸡禽毛癣菌、石膏样小孢子菌、犬小孢子菌、新霉素链霉菌、密旋链霉菌、短帚霉、黄曲霉、白色念珠菌、热带念珠菌、近平滑念珠菌和克柔念珠菌等。一些细菌也可产生蛋白酶,如栖息微球菌、表皮葡萄球菌和地衣芽孢杆菌等。Lucas FS等[1]在对牧场土壤产蛋白酶细菌分离中发现产蛋白酶细菌具有多样性,可为杆菌属、噬细胞菌属、放线菌属或蛋白菌属(Proteobacteria)。最近,Kim JS [2]发现一种新的细菌Fervidobacterium pennivorans 能够产生称为fervidolysin的角蛋白酶。Riffel A等[3]从家禽废物中分离出一种新的能完全降解羽毛的产蛋白酶的细菌,经形态、生化及16S rRNA鉴定为Chryseobacterium sp菌株 kr6。蛋白酶来源不同,其结构、理化性质、活性和底物也不同。这些酶多数属于细胞外酶,个别为细胞内酶。根据蛋白酶反应的最适pH值不同可以把蛋白酶分成酸性酶和碱性酶二大类;多数蛋白酶反应的最适温度在45℃~50℃,而念珠菌酸性蛋白酶(CAP)的最适温度为37℃。多数酶的活性表达依赖低浓度二价金属离子(Ca2+、Mg2+等),而一些重金属离子(Hg2+、Pb2+、Cu2+等)、1,10-邻二氮杂菲和EDTA则抑制其活性[3,4]。不同的蛋白酶有不同的特异性抑制剂,分别属于不同酶家族的抑制剂,提示蛋白酶具有不同的进化起源。蛋白酶的产生需要底物的诱导,如用蛋白胨培养的犬小孢子菌不产生蛋白酶,但在培养基中加入人发后,则可以产生蛋白酶。蛋白酶的底物范围相当广泛,除蛋白外,还包括多种多肽、胶原蛋白、酪蛋白、弹性蛋白、血红蛋白、明胶和卵蛋白等。但一些蛋白酶底物范围却较窄,如鸡禽毛癣菌酶只能利用鸟类羽毛,因此,它只感染鸟类。而密旋链霉菌释放的丝氨酸蛋白酶,P1位点对底物的精氨酸和赖氨酸有专一性,而P1'位点对苯丙氨酸和精氨酸有专一性。该酶对底物表现出高度的立体选择性和二级结构专一性[5]。蛋白酶反应的水解产物因蛋白酶的不同而不同,须癣毛癣菌蛋白酶I的水解产物是氨基酸,颗粒发癣菌蛋白酶则是短肽。 2 蛋白酶与免疫 蛋白酶是皮肤真菌重要的侵袭因子,是研究真菌疫苗的一个候选抗原,能否利用蛋白酶作为疫苗来预防动物和人的皮肤真菌感染一直是人们关注的问题,因此,研究蛋白酶与宿主免疫的相互关系非常重要。Descamps F等[6]认为针对真菌抗原的循环抗体与皮肤真菌感染的易感性及疾病的恢复无明显的关系,与体液免疫不同,细胞免疫反应与皮肤真菌感染的康复及抗病性的获得密切相关,针对真菌抗原的迟发型超敏反应(delayed-type hypersensitivity,DTH)与皮损的恢复以及防止复发密切相关,缺乏DTH则与真菌的易感性和慢性感染相关。将真菌感染鼠的Th细胞转移至易感鼠可获得过继免疫,也说明了细胞免疫反应在真菌感染中的重要性。Mignon BR等[7]最早观察了天然的犬小孢子菌外抗原和纯化的重组犬小孢子菌5kDa蛋白酶对豚鼠犬小孢子菌实验感染模型体液免疫和细胞免疫反应的影响,发现纯化的蛋白酶并不诱导豚鼠产生抗蛋白酶IgG,蛋白酶不引发或仅引发微弱的DTH,提示5kDa蛋白酶不是犬小孢子菌感染的重要抗原。Brouta F等[8]用ELISA法和淋巴细胞增殖分析方法观察了天然的犬小孢子菌外抗原和纯化的重组蛋白水解金属蛋白酶(recombinant keratinolytic metalloprotease,r-MEP3)对豚鼠犬小孢子菌实验感染模型体液免疫和细胞免疫的影响,发现外抗原和r-MEP3均可促进豚鼠的体液免疫和细胞免疫。Woodfolk JA等[9]也发现重组红色毛癣菌蛋白酶Tri r2激发速发型超敏反应和DTH,认为对真菌特异性抗原的低反应性是造成人类真菌感染的原因。 Descamps F等[10]用纯化的重组犬小孢子菌5 kDa蛋白酶和天然的犬小孢子菌外抗原作为疫苗免疫豚鼠,并观察其对豚鼠犬小孢子菌实验感染模型的作用。结果发现蛋白酶和外抗原均可引起强烈的体液免疫和细胞免疫反应,但反映皮损严重程度的评分与对照组之间无显著差异。说明犬小孢子菌5kDa蛋白酶诱导的特异性免疫反应不能对犬小孢子菌的感染起保护作用。因此,在利用蛋白酶研制真菌疫苗的道路上仍然面临着诸多困难。 3 蛋白酶与皮肤病的治疗 蛋白酶是皮肤真菌重要的侵袭因子,因此,能否利用蛋白酶抑制剂或者蛋白酶单克隆抗体抑制蛋白酶的作用,削弱皮肤真菌的侵袭性,从而达到治疗皮肤真菌感染的目的,是今后研究蛋白酶与皮肤真菌感染相互关系的一个重要方向[11]。迄今为止,尚缺乏研制蛋白酶单克隆抗体在体表中和蛋白酶削弱皮肤真菌的侵袭性报道。蛋白酶具有高效的蛋白水解活性,利用蛋白酶改善药物在蛋白中的通透性,提高皮肤外用药物的疗效,特别是在银屑病、角化过度性皮肤病(神经性皮炎、慢性湿疹等)和甲病中的治疗应用值得研究。蛋白酶也可以应用于美容护肤品,帮助活性因子透过皮肤屏障,去除皮肤多余角质,实现皮肤的深层护理。角蛋白酶能水解毛发蛋白,利用蛋白酶进行脱毛,治疗多毛症也可能具有良好的应用前景。4 基因工程蛋白酶的研究 以往对蛋白酶的研究工作主要集中于菌种筛选、酶的提取纯化和活力测定等基础工作,对酶结构和基因表达的研究极少。20世纪90年代,随着分子生物学技术的发展,国外的一些学者开始进行蛋白酶基因工程表达和分子结构等方面的研究。Lin X等采用随机引物PCR的方法获得了编码地衣芽孢杆菌PWD-1菌株分泌的蛋白酶基因(Ker A)的全序列,Ker A基因与地衣芽孢杆菌NCIMB6816编码Carlsberg枯草杆菌蛋白酶的基因具有97%的同源序列。将Ker A基因转染产酶缺陷型枯草杆菌DB104菌株,该转化菌株能在含羽毛的培养基和LB培养基中产生活性蛋白酶[14~16]。Woodfolk JA等从红色毛癣菌cDNA文库克隆了Tri r4,并在毕赤酵母(Pichia pastoris)中表达了重组蛋白Tri r4,一个含726个氨基酸的蛋白质,属丝氨酸蛋白酶家族。另外,还在埃希氏大肠杆菌(Escherichia coli)菌株BL21中表达和发现了Tri r2,一种毛癣菌的新抗原,编码412个氨基酸,属D类枯草杆菌蛋白酶亚家族;通过SYBYL分子模建软件包进行分子模建,明确了Tri r2的三维分子结构和免疫优势T细胞抗原决定簇的分子位点[9,17,18]。2002年,Descamps F等[19]成功地从犬小孢子菌中获得了3个具有蛋白水解活性的枯草杆菌蛋白酶的基因全序列,并通过毕赤酵母系统重组表达了SUB3蛋白酶[6]。Wang JJ 等[20]用枯草杆菌表达系统和埃希氏大肠杆菌系统表达了蛋白酶—链亲和素融合蛋白,并用生物素—亲和素一步法纯化了融合蛋白,提高了纯化效率和蛋白酶的稳定性。上述研究为蛋白酶的工业化生产与应用提供了良好的工作基础。由于微生物在底物诱导状态下表达蛋白酶,而在非底物诱导状态下不表达蛋白酶,因此,差异PCR等方法不失为发现蛋白酶新基因的良好手段。 综上所述,蛋白酶作为皮肤真菌重要的侵袭因子,一方面,在皮肤真菌感染的发病中起重要作用;另一方面,蛋白酶具有高效的蛋白水解活性,其在生物医药、美容、废物处理及动物饲料生产等方面具有广阔的应用前景。
New Development on Research and Application of Microbial Epoxide HydrolasesTang Yanfa, Xu Jianhe, Ye Qin(The State Key Laboratory of Bireactor Engineering, Shanghai 200237)Abstract Enantiopure epoxides, as well as their corresponding vicinal diols, are highly valuable chiral synthons useful for the synthesis of various biologically active One of the presently emerging approaches is the use of the enantioselective hydrolysis of racemic epoxides using epoxide hydrolases (EHs) In this context, major characteristics, substrate specificities and enantioselectivities of epoxide hydrolases from various microbial sources, such as bacteria and fungi, are Key words Epoxide hydrolase, Chiral epoxide, Chiral vicinal diol, Biotransformation, Optical resolution摘要 手性环氧化物及邻二醇是一些生物活性物质不对称合成中的重要中间体。应用细菌和真菌产生的环氧化物水解酶不对称水解消旋环氧化物来制备这些物质已引起人们的高度重视。此文对此进行了综述,并对它们的对映选择性进行了评价。关键词 环氧化物水解酶 手性环氧化物 手性邻二醇 生物转化 光学拆分--------------------------------------------------------------------------------微生物环氧化物水解酶的研究与应用新进展唐燕发 许建和 叶勤(华东理工大学生物反应器工程国家重点实验室 上海 200237) 手性环氧化物及其开环产物邻二醇能与各种亲核试剂反应,因而在手性化合物的合成过程中被广泛应用,是一种重要的有价值的中间体。近年来很多研究小组都对它们的生产方法进行了研究[1],如烯烃的Katsuki-Sharpless不对称环氧化和不对称二羟基化;烯烃的Jacobsen不对称环氧化。另一方面很多利用生物催化合成这类物质的方法已有报道,如水解酶类(特别是脂肪酶和酯酶), a-卤酸脱卤素酶,乳酸脱氢酶或甘油脱氢酶,单加氧酶,过氧化物酶和卤过氧化物酶。以上各种方法有的对底物有特殊要求,有的对映选择性不高,有的需要氧化还原辅酶如NAD(P)H,这些都限制了它们的应用。不依赖于辅因子的环氧化物水解酶[ECX]可以有效地代替以上各种方法,环氧化物水解酶最初是在哺乳动物肝组织的解毒功能研究中被发现,但由于从哺乳动物中得到的这种酶来源有限,故限制了其大规模应用,但近年来发现在一些微生物如细菌、真菌中也存在环氧化物水解酶,有效地解决了这一问题。本文将综述各类细菌和真菌产生的环氧化物水解酶。1 环氧化物水解酶作用机理 酶的一个天冬氨酸残基进攻被酶的一个赖氨酸残基部分质子化的环氧化物的一端形成一个共价结合的二元醇单酯-酶中间体[2,3],酶的组氨酸残基[4]从落到酶活性中的一个水分子中夺取一质子从而产生一个羟基,这个羟基进攻二醇-单酯-酶中间体,水解产生二醇,如图1。 图1 环氧化物水解酶的作用机理图2 环氧化物微生物水解时构型保持和构型反转 水解时有两个不同的途径,如图2。 (1) 羟基进攻取代较少的碳原子,手性中心构型不变(如by Asper- gillus niger)[5]。 (2) 羟基进攻取代较多的碳原子(即手性中心)从而使手性中心构型反转(如by B sulfurescens)[5]。 在两种途径中,进入的羟基都是以反式立体方式进入的,若环氧环的两碳原子都是手性碳,则羟基进攻的任何位置碳原子的构型都将反转。虽然保持构型不变的第一种方式较普遍,但也有一些构型反转的例子已报道[5-7]。2 细菌产生的环氧化物水解酶 早期美国Illinois大学等小组发现Pseudomonad NRRL 2944[8]、Psedomonas pautida[9]、Bacillus megaterium ATCC 14581[10]中存在环氧化物水解酶,但真正开始对环氧化物水解酶的研究是由奥地利的K Faber研究小组进行的。他们最初在用Rhodococcus NOVO 409的固定化酶水解腈化合物的研究中发现该酶具有未知的能水解环氧化物的活性。对1,1-二取代环氧化物,当R1为甲基,R2为一长碳链时,对映选择性最高,剩余R-环氧化物和水解产物S-二醇ee值分别为72%和40%;对单取代环氧化物,ee值都很低;而内消旋环氧化物则不能作为底物[11],如图3。 图3 Rhodococcus NOVO 409不对称水解1,1-二取代环氧化物 之后他们[12]筛选了43种菌,其中7种显示活性,即4种细菌:Rhodococcus NCIMB 11216, NCIMB11215 和NCIMB 11540及Corynebacterium UPT 9;3种真菌:Diploida gossypina ATCC 10936, Fusarium solani DSM 62416 和Glomerella Cingulata ATCC 10534。其中第一和第四种细菌对2-环氧辛烷有中等活性,都优先水解R型环氧化物形成R-1,2-二羟基辛烷,但对映选择性很低。NCIMB11540水解2-甲基-1,2-环氧庚烷时产生的S-二醇和剩下的R-环氧化物ee值分别为89%和51%,E值为29。NCIMB 11216[13]水解2-甲基-1,2-环氧庚烷,2-甲基-1,2-环氧壬烷和2-甲基-1,2-环氧十一烷时,产物S-二醇ee值分别高达96%、98%和99%,剩下的R-环氧化物ee值亦分别为71%、25%和55%,E值分别为104、126和200,可见两个取代基差别愈大,选择性愈高,当把甲基改为乙基时,对映选择性E值急剧下降,其纯酶[14]表明该酶不需要辅酶,是一个溶解性的寡酶,分子量为35 kDa,等电点为7。催化2-甲基-1,2-环氧庚烷时,最佳温度为30°C,最佳pH为0,这个菌可运用于芳樟醇[15](一些植物和果实的香味物质)的合成中。 另有两种菌Rhodococcus equi IFO 3730和Mycobacterium paraffinicum NCIMB 10420[1]对1,1-二取代环氧化物也显示相似的对映选择性,E值大于200,其中第一个菌可应用于昆虫性信息激素(S)-(-)-Frantalin[16]的合成中,在拆分过程中E=39。 最近又发现另外4种菌,Nocardia H8, Nocardia EH1, Nocardia TB1和Rhodococcus ruber DSM 43338[17]对2-甲基-1,2-环氧庚烷也具有很好的选择性(E>200)。以前的情况是若得到的二醇光学活性高,但转化率总是较低,使收率很低,并且剩下的环氧化物光学活性也很低,然而,两种新菌Nocardia EH1和Nocardia TB1对底物的转化率都达到50%,并且剩下的R-环氧化物和形成的S-二醇ee值都大于99%。在长侧链上引入一个芳香基团(即底物为4-苯基-2-甲基-1,2-环氧丁烷)则Nocardia菌对此底物的选择性急剧降低(EH1, E=12; TB1, E=13)。若酶水解后,再加酸处理,即两步反应在一起连续进行,则得到同一种构型的二醇[18,19],收率都大于90%,ee值都大于99%。从Nocardia EH1中提取的粗酶[20,21]水解顺式2,3-环氧庚烷,得到单一的产物(2R,3R)-2,3-二羟基庚烷,收率为79%,ee值为91%。两种异构体的水解都发生在分子中构型为S的碳原子上,故得到(2R,3R)-二醇这一种产物。此粗酶固定化[22]于DEAE-Cellulose后,酶的对映选择性只有很小的下降,但酶活提高了1倍多(为原来的225%),最佳温度可从35°C提高到45°C,重复反应5次后,酶活仍有55%。纯化后得到的纯酶[23]表明该酶不需要辅酶,是一种寡酶,分子量为34kDa,最佳pH为8~9。 以上所研究的细菌酶都显示出相似的对映选择性,比如它们都优先水解S-2-甲基-1,2-环氧烷烃,Faber等还分离到了另外两种具有相反对映选择性的菌株,即Mycoplana rubra和"Rot" [24],第二种菌在分类学上还没有确定。对1,1-二取代环氧化物都优先水解R型,但对映选择性都不高。 Faber所研究的环氧化物水解酶都属于组成型酶,它们对2-甲基-2-烷基环氧化物等具有分支的末端1,2-环氧化物具有很高的对映选择性,但对于无分支的末端1,2-环氧化物只有很低的对映选择性,并且不水解内消旋环氧化物,而南非Botes等[25]应用Chryseomonas luteola拆分1,2-环氧辛烷,剩余的S-环氧化物和形成的R-二醇ee值分别为98%和86%,这是到目前为止首次报道在细菌中存在的对末端1,2-环氧化物具有很高对映选择性的环氧化物水解酶。 1995年英国Carter 和Leak [26]分离到一株菌Corynebacterium C12, 所产环氧化物水解酶为诱导型酶。Archer等[27]应用此菌拆分1-甲基-1,2-环己烯环氧化物,有很好的对映选择性,得到(1R,2S)环氧化物,(收率30%, ee>99%)和(1S,2S)-1-甲基-1,2-二羟基环己烷(收率42% , 89% ee)。若随后再用酸水解剩下的环氧化物,则两步串级反应就得到单一的(1S,2S)-二醇产物(收率80%, ee>95%)。这种诱导型酶的底物特异性范围较小,只对与诱导物相关的底物有相对较高的活性。分离得到的纯酶[28]表明该酶是一种聚合酶,其亚单位分子量为43140Da。 1989年荷兰Van den Wijingard等[29]从淡水沉淀物富集培养液中分离得到革兰氏阴性菌Pseudomonas AD1,所产环氧化物水解酶也为诱导型酶。纯化[30,31]后表明该酶是一种寡酶,分子量是35kDa,该酶能水解表氯醇、表溴醇、环氧辛烷及苯乙烯环氧化物。基因克隆后在E coli中表达[32]的重组酶水解苯乙烯环氧化物和对氯苯乙烯环氧化物[33]时对映选择性分别为2和2。Rink等[34]研究了其催化机理。除此之外,日本Nakamura等[35,36]发现在Corynebacterium N-1074中存在两种环氧化物水解酶(IIa, IIb)也能降解表氯醇,其中酶IIb具有较高的对映选择性。 1999年荷兰Van Der Werf等报道[37]发现了一类新的产生于Rhodococcus erythropolis DCL 14的环氧化物水解酶。单萜能诱导该菌产酶,该酶是一种寡酶,分子量为17kDa,不需辅酶,在pH=7和50°C时酶活最高。只有柠檬烯-1,2-环氧化物,1-甲基-1,2-环己烯环氧化物,环己烯环氧化物和茚环氧化物可作为其底物。水解1-甲基-1,2-环己烯环氧化物时对映选择性同Corynebacterium C12[27]相反,但两种情况下都得到(1S,2S)-二醇,说明该酶具有不同的催化机理。 从以上的综述可以看出,含有环氧化物水解酶的细菌比五六年前所认为的要普遍的多,这些细菌分别属于Pseudomonas, Rhodococcus, Corynebacterium, Mycobacterium, Nocardia, Mycoplana,“Rot”, Bacillus, Agrobacterium, Xanthobacter及Chryseomonas 等,其中Rhodococcus NCIMB 11216, Nocardia EH1 和Nocardia TB1对2-甲基-2-烷基环氧化物等具有分支的末端1,2-环氧化物具有很高的对映选择性;Chryseomonas luteola对无分支的脂肪族末端1,2-环氧化物具有特别高的对映选择性。底物结构与酶的对映选择性的关系才刚被探讨,只有当底物具有严格的取代方式时,才具有高对映选择性。同单取代环氧化物相比,C-2位的甲基对对映选择性有重要的作用,然而,当甲基变为乙基后就丧失了对映选择性,这表明存在着一个相当严密的活性位点,只有一部分底物能符合它。大多数酶对被测试的底物显示相同程度的对映选择性,甚至对单取代和双取代环氧化物显示相似的对映选择性的变化,这些相似性表明这些酶在进化上是具有联系的。相信随着研究的深入,会有更多的有关这方面的研究报道。组成型酶对1,1-二取代环氧化物具有较高的对映选择性,但比活力都不高;而诱导型酶虽然比活力较高,但仅对有限的底物有活力。盼望在不久的将来可运用基因工程技术来解决这一问题。3 真菌产生的环氧化物水解酶 虽然早期日本Suzuki等[38]和美国Kolattukudy[39]等发现真菌Helminthosporum sativum和Fusariun solani pis中存在环氧化物水解酶,但真正集中研究真菌环氧化物水解酶是由法国Furstoss等首先进行的。他们发现Aspergillus niger LCP 521能不对称水解香叶醇衍生物,制备Bower's compound[40](一种保幼激素类似物);还可以选择性地水解非对映的8,9-环氧柠檬烯立体异构体,制备Bisabolol的4种天然立体异构体[41]。 1993年Furstoss等[5]报道了Aspergillus niger水解苯乙烯环氧化物剩下S-苯乙烯环氧化物(收率23%, 96% ee),另一种菌Beauveria sulfurescens水解苯乙烯环氧化物具有良好的互补对映选择性,给出R-苯乙烯环氧化物(收率19%, 98% ee),两种菌都产生同样的R-二醇,[18O]标记实验[42]结果表明A niger水解发生于C-2,构型不变,而B sulfurescens水解发生于C-1,构型反转。若在一个反应器中,同时用这两种菌水解苯乙烯环氧化物消旋物,则得到单一的二醇产物R-1-苯基-1,2-二羟基乙烷,收率92%,ee值为89%。在水解一系列取代苯乙烯环氧化物[43](底物结构如图4)时若苄位引入一个甲基如2就降低了A niger的对映选择性,剩余S-环氧化物和R-二醇ee值分别为73%和32%;若在b位有取代如3-7,则都不能作为酶的底物。 图4 与A niger 和 B sulfurescens 反应的底物 B sulfurescens水解a -甲基苯乙烯环氧化物2时对映选择性不高;水解顺式-b -甲基苯乙烯环氧化物3形成的(1R,2R)-二醇在所有转化率下几乎都光学纯,而剩下的(1R,2S)-环氧化物在所有转化率下ee值都很低(20%);b ,b -二甲基苯乙烯环氧化物5不能作为B sulfurescens的底物;水解茚环氧化物6和1,2-环氧四氢奈7后剩余的(1R,2S)- 环氧化物光学纯度很高(ee>98%);水解反式-b -甲基苯乙烯环氧化物4产生的(1R,2R)-环氧化物和(1R,2S)-二醇收率(分别为30%和38%)和ee值(分别为98%和90%)都很好,它是唯一在转化率接近50%时,剩余的环氧化物和二醇产物光学纯度都很高的底物,但反式-环氧化物的对映选择性水解在文献中少有报道。 对一系列对位取代苯乙烯环氧化物[44],A niger都仍优先水解R-环氧化物形成R-二醇,剩余S-环氧化物ee值都大于96%,收率28%~38%。水解对硝基苯乙烯环氧化物时,若随后进行酸水解[45],则得到单一的R-二醇(收率94%, 80% ee),可用于制备b-肾上腺素阻断剂(R)-Nifenalol。酶水解时,若用粗酶[46,47]代替菌丝体,DMSO是抑制影响最小的一种助溶剂,反应后剩下的S-环氧化物ee值可达97%,转化率为47%,对映选择性也很高(E=41),底物浓度可提高到330mmol/L(l-1)而不影响ee值,因此这个方法在制备规模的环氧化物拆分上很有用。B sulfurescens仍显示互补的对映选择性,当取代基是-H, -CH3, -F, -Br时,水解剩余的R-环氧化物ee值都大于96%,除对硝基苯乙烯环氧化物外,水解所形成的二醇仍都具有R构型,给电子基团如p-CH3,使反应速度增加4倍,而吸电子基团不仅降低反应速率还降低对映选择性,这两种现象都显示有酸催化过程存在,并且在过渡态时有碳正离子存在。 另外,A niger还可以对映选择性地水解对溴-α-甲基苯乙烯环氧化物[48]和缩水甘油环缩醛衍生物[49]。该酶已进行了优化生产[50],纯化酶[51]表明该酶由4个相同亚基组成,每个亚基分子量为45kDa,40°C和pH=0时酶活最高。 除此之外,韩国Choi[52]也筛选得到另一株A niger;英国Grogan[53]也发现另一株真菌Beauveria densa CMC 3240,都可以不对称水解苯乙烯环氧化物。 1998年Furstoss等[54,55]用单取代、1,1-二取代、反式-1,2-二取代、顺式-1,2-二取代环氧化物作为底物对42种真菌进行筛选,得到7株有一定对映选择性的菌种,即A niger LCP 521, A terreus CBS 116-46, B bassina ATCC 7159, C globosum LCP 679, C elegans LCP 1543,M isabellina ATCC 42613, Syncephalastrum racemosum MUCL 28766。 对每一类底物几乎都可以用一二个菌水解得到光学纯的对映体,结果如表1。在用Syncephalastrum racemosum无细胞提取物[56]水解一系列对位取代苯乙烯环氧化物时,若对位是给电子基团如甲基有利于苄位(a位)进攻,若对位是吸电子基团如硝基则有利于β位进攻,决定反应速率的步骤是氧环的断裂,并且是第一次揭示出在反应过程中很可能存在着环氧化物的酸活化机理。表1 几种真菌对脂肪族环氧化物的不对称水解 底物 菌种 环氧化物收率/% ee/% 二醇收率/% ee/% 1,2-环氧辛烷 M isabellina 18 97(S) 54 35(R) 2-甲基-1,2-环氧庚烷 A niger 22 99(S) 62 32(R) 反式-1-甲基-1,2-环氧庚烷 C globosum 12 97(1S,2S) 60 78(1R,2S) 反式-1-甲基-1,2-环氧庚烷 M isabellina 11 98(1R,2R) 62 59(1R,2S) 顺式-1-甲基-1,2-环氧庚烷 C globosum 8 97(1R,2S) 59 58(1R,2R) 1995年美国Merck研究人员[57]在80种真菌中筛选到2株能产生几乎光学纯(100% ee,但收率很低,只有14%)(1S,2R)-茚环氧化物(是HIV蛋白酶抑制剂MK639侧链的前体,是一个有价值的手性合成子)的真菌,即Diploida gossipina ATCC 16391和Lasiodiploa theobro- mae MF5215,另两种菌能产生光学纯度相当好(91% ee)的另一种对映异构体(1R,2S)-茚环氧化物,即Gilmaniella humicola MF 5363和Alentaria tenius MF 4352。第一种菌可用于制备规模的拆分。 图5 与Rhodotorula glutinis反应的底物 1997年荷兰Weijers等[58,59]发现Rhodotorula glutinis(一种酵母菌)可以水解一系列芳基取代、烷基取代和脂环族环氧化物,并具有较好的对映选择性,如图5。水解芳基取代环氧化物1, 4, 8,剩余环氧化物ee值大于98%,收率可高达48%;末端、中间、顺式和反式环氧化物水解得到的二醇ee值经常高达98%;可以高对映选择性水解内消旋环氧化物9和10,相应的二醇产物ee值分别可达98%和90%;(-)-柠檬烯环氧化物11的水解具有很高的非对映体选择性,剩余(1S, 2R,4S)-环氧化物,并产生(1R,2R,4S)-二醇产物(收率好,ee>98%);对脂肪族末端1,2-环氧化物,当底物的链长具有6个以上碳原子时,酶活较高,对1,2-环氧庚烷和1,2-环氧己烷都可获得较高的对映选择性,对后者,剩余S-环氧化物和产物R-二醇ee值分别为98%和83%,收率分别为48%和47%,E值可达84,但此菌水解1,2-环氧辛烷时对映选择性相对较低,这促使作者以此化合物作为底物,对187株酵母菌进行了筛选[60],虽然很多菌对此底物有活性,但具有一定对映选择性的菌很少,只有一些担子菌包括Trichosporon、Rhodotorula和Rhodosporidium具有较高的对映选择性,其中Rhodotorula araucariae CBS 6031和Rhodosporidium toruloides CBS 0349这两种菌既具有活性又具有较高的对映选择性(E值分别大于200和100),水解时都是优先水解R-环氧化物,生成R-二醇,作者应用这两种菌进行了制备规模的拆分,把环氧化物的浓度提高500mmol/L,无明显不良影响,反应速率只分别下降了14%和16%。 除以上这些真菌外,Faber等筛选得到的3种真菌[12](见细菌部分),Corynosporium cassiieda [61]和两种暗色真菌Ulocladium atrum CMC 3280及Zopfiella karachiensis CMC 3284[62]中也存在环氧化物水解酶,但对映选择性较低。 真菌环氧化物水解酶一般是组成型酶,可以用普通碳源大规模培养生产。它们具有相对较广的底物范围,对芳香族、取代脂环族和无分支的脂肪族末端1,2-环氧化物具有特别高的对映选择性。同细菌一样,含有环氧化物水解酶的真菌也比五六年前认为的多,这些真菌分别属于Helminthosporum, Fusarium, Aspergillus, Beauveria, Cunning- hamella, Syncephalastrum, Candida, Diploida, Lasiodiploida, Gilmaniella, Alentaria, Pleurotus, Rhodotorula, Trichosporon, Rhodosporidium, Glo-merella, Corynosporium,Ulocladium, Zopfiella, Saccharomyces等。4 结语 目前含有环氧化物水解酶的细菌和真菌的获得仍然是通过从已知菌种中筛选(组成型酶)[1,12,17,54,55,57,60]和从土壤中分离(诱导型酶)[26,29,37,52]。在一些真核生物生物异源物质特别是芳香族化合物的生物降解过程中和一些原核生物烯烃的生物利用过程中,环氧化物及其邻二醇都作为重要的中间体,这揭示出在这些生物中都存在着环氧化物水解酶,有利于对新菌种的发现。我室已从土壤中分离到一株Bacillus ,水解缩水甘油苯基醚时优先R-环氧化物产生R-二醇,并具有较高的对映选择性(E=5),这是到目前为在止对这个底物对映选择性最高的微生物。微生物环氧化物水解酶可通过微生物发酵培养大量获得,可以设想,在不久的将来具有较高对映选择性的微生物环氧化物水解酶必可应用于工业生产上,通过拆分价格较便宜的消旋环氧化物来制备光学纯的环氧化物及邻二醇