期刊问答网 论文发表 期刊发表 期刊问答
  • 回答数

    3

  • 浏览数

    233

www6666
首页 > 期刊问答网 > 期刊问答 > 数据分析与挖掘论文选题意义

3个回答 默认排序1
  • 默认排序
  • 按时间排序

wanghui12356

已采纳
数据分析的意义主要体现在哪些方面呢?(一) 数据分析工作能完整地、正确地反映客观情况为了完整地、正确地反映客观情况的全貌,就必须在实事求是的原则的指导下,经过对大量的、丰富的统计资料和数据进行加工制作和分析研究,才能做出科学的判断,并编写成数据分析报告。这比一般的报表数据更集中、更系统、更全面地反映客观实际,也便于人们的阅读、理解和利用。(二) 数据分析工作能发挥监督的重要手段数据分析部门掌握有大量丰富的统计数据及资料,比较全面、准确地掌握和了解社会及该公司经济运行的状态和发展变化情况,对数据的口径范围和来龙去脉熟悉,因而能较好地承担监督检查和企业运营相关部门的方针政策的贯彻执行情况、发展规划和生产经营计划的完成情况、以及生产经营责任制和各项重要经济指标的完成情况等任务。 (三) 数据分析工作能实现管理科学化和统计参与决策数据分析部门利用数据资料丰富的优势,开展分析研究,透过事物的表面现象深入到事物的内在本质,由感性认识阶段上升到理性认识阶段,实现认识运动的质的飞跃,从而提示事物的现状及其内在联系和发展规律,不仅有利于领导和有关部门客观全面地认识该公司经济活动的历史、现状及其发展趋势,促进管理水平的提高,而且有利于制定正确的决策和计划,以充分发挥数据分析促进管理、参与决策的重要作用。(四) 数据分析工作有利于数据资料的深度开发利用进行数据分析的目的都是为了可以给企业带来更多的商业价值以及帮助企业规避或者减少风险带来的损失,提高数据质量,为企业解决问题。(五) 数据分析工作有利于提高数据分析人员的素质进行数据处理的过程是一个复杂的过程,这个环节当中,从数据的收集到数据筛选、数据分析都有可能产生错误,因此我们需要在各个环节中对错误的数据进行甄别,特别是数据处理的阶段,可以很好的对数据进行一个清理的过程。当然不仅仅是数据处理的过程,每一个环节都需要相关的技术人员通过一定合理性分析找出质量不高的数据,或者进行错误数据的判定,它要求数据分析人员不仅需要有数据分析基础知识,还要有一定的经济理论和政策水平;不仅需要了解数据分析的方法,还要了解数据分析的来龙去脉,了解有关的经济技术状况;不仅要有一定的文化水平和分析归纳能力,还要具有一定的写作能力和技巧。这不仅仅需要的是技术,也是对数据分析人员素质的考验。

数据分析与挖掘论文选题意义

191 评论(9)

Miss.P

在产品的整个寿命周期,包括从市场调研到售后服务和最终处置的各个过程都需要适当运用数据分析过程,以提升有效性。例如J开普勒通过分析行星角位置的观测数据,找出了行星运动规律。又如,一个企业的领导人要通过市场调查,分析所得数据以判定市场动向,从而制定合适的生产及销售计划。因此数据分析有极广泛的应用范围。网络营销对网络营销的意义在中国,尽管网络营销的概念很火,但网络营销的效率低于一些发达国家也是事实。无论是门户广告、搜索引擎广告,还是广告联盟,从行业平均转化率上看,都要低于国外较为成熟国家的水平。据估计,国内的Bounce rate(蹦失率,即用户只浏览第一页即离开的比例)介于90%~99%之间,而欧美的Bounce rate则是70%左右。诚然,国内的网络营销环境处于发展之中,环境不那么尽如人意,但中国互联网络信息中心分析师孙秀秀认为,出现这种情况的很多责任在投放广告的企业方,在于对营销背后的数据分析工作的不重视,没有精确定位有效的客户群,导致大量的展示给了不相关的网民。通常,广告投放前的数据分析可以分为两步走。第一步:描述目标群体。比如,目标群体是18~25岁,上网购物的年轻女性。第二步:描述此群体的网络活动轨迹。也就是说,知道目标客户群上什么网站、做什么事、在什么时间地点能够找到他非常重要。实际上,论覆盖面,网络营销还远远赶不上传统媒体。2009年底中国的互联网普及率为9%,而同期中国电视的普及率却已经超过80%。但是,仍旧有很多有远见的企业选择网络营销。其中的一个重要原因是,网络营销的全过程都可以被追踪到,通过数据分析可以随时调整投放方式。采用的分析方法如下:1、描述性统计分析包括样本基本资料的描述,作各变量的次数分配及百分比分析,以了解样本的分布情况。此外,以平均数和标准差来描述市场导向、竞争优势、组织绩效等各个构面,以了解样本企业的管理人员对这些相关变量的感知,并利用t检验及相关分析对背景变量所造成的影响做检验。2、Cronbach’a信度系数分析信度是指测验结果的一致性、稳定性及可靠性,一般多以内部一致性(consistency)来加以表示该测验信度的高低。信度系数愈高即表示该测验的结果愈一致、稳定与可靠。针对各研究变量的衡量题项进行Cronbach’a信度分析,以了解衡量构面的内部一致性。一般来说,Cronbach’a仅大于0.7为高信度,低于0.35为低信度(Cuieford,1965),0.5为最低可以接受的信度水准(Nunnally,1978)。3、探索性因素分析(exploratory factor analysis)和验证性因素分析(confirmatory factor analysis)用以测试各构面衡量题项的聚合效度(convergent validity)与区别效度(discriminant validity)。因为仅有信度是不够的,可信度高的测量,可能是完全无效或是某些程度上无效。所以我们必须对效度进行检验。效度是指工具是否能测出在设计时想测出的结果。收敛效度的检验根据各个项目和所衡量的概念的因素的负荷量来决定;而区别效度的检验是根据检验性因素分析计算理论上相关概念的相关系数,检定相关系数的95%信赖区间是否包含1.0,若不包含1.0,则可确认为具有区别效度(Anderson,1987)。4、结构方程模型分析(structural equations modeling)由于结构方程模型结合了因素分析(factor analysis)和路径分析(path analysis),并纳入计量经济学的联立方程式,可同时处理多个因变量,容许自变量和因变量含测量误差,可同时估计因子结构和因子关系。容许更大弹性的测量模型,可估计整个模型的拟合程度(Bollen和Long,1993),因而适用于整体模型的因果关系。在模型参数的估计上,采用最大似然估计法(Maximum Likelihood,ML);在模型的适合度检验上,以基本的拟合标准(preliminary fit criteria)、整体模型拟合优度(overall model fit)以及模型内在结构拟合优度(fit of internal structure of model)(Bagozzi和Yi,1988)三个方面的各项指标作为判定的标准。在评价整体模式适配标准方面,本研究采用x2(卡方)/df(自由度)值、拟合优度指数(goodness.of.f:iJt.in.dex,GFI)、平均残差平方根(root—mean.square:residual,RMSR)、近似误差均方根(root-mean—square-error-of-approximation,RMSEA)等指标;模型内在结构拟合优度则参考Bagozzi和Yi(1988)的标准,考察所估计的参数是否都到达显著水平
321 评论(13)

hangerwang

FineBI数据挖掘建筑在FineBI的多维数据库之上,集成FineBI敏捷性的优点。当FineBI系统第一次搭建完成,并将数据准备好之后,像FineBI分析一样,不需要根据新的业务需求进行新的数据准备。
282 评论(8)

相关问答