fengmeng0512
对大数据的理解与思考首先,大数据的到来,对人们的观念将带来深远的影响。 我们以前习惯认为:找到现象背后的原因,比清楚现象是什么更重要。通过“塔吉特怀孕预测”的例子可以看到,通过关联分析、聚类分析等数据挖掘方法,大家很容易找到事物之间的关系。但是,这些大数据分析结果,并不会直接告诉我们,事物之间为什么存在这些关系。在不清楚为什么存在这些关系之前,又的确看到了这些关系带来了价值;所以,在大数据应用领域就需要改变以前的思考方。即:先找到“是什么”再去找“为什么”;清楚是什么,与搞清楚为什么同等重要。 手工统计时代,出于收集全部数据非常困难或代价巨大的原因,很多数据分析都是采用抽样数据;但是,现在不同了,随着信息技术的发展,现在很多领域都能够方便的收集到全量数据。诸如无纸化办公的兴起、信息系统的使用、电子商务的发展等等,都为收集全量数据提供了便捷的条件。那么,这时候数据的“样本”=“全体数据”。这相对以前来说,也是革命性的影响。 在抽样分析时代,个别样本的质量甚至决定结果的质量。在大数据时代,这也变了,可以允许个别数据的不精确,甚至错误。举个简单例子来说明这个道理,比如在温室大棚里放一只温度计,当这只温度计有问题时,整个温度都是不准确的。若在大棚里均匀分布十几只温度计,其中一只有问题,对温室大棚温度的统计结果无碍大事,基本可以忽略其影响。 其次,大数据应用,影响商业变革和社会进步。 大数据应用正改变着企业的业务发展方式。比如:京东、天猫通过对交易数据的“二次利用”,寻找目标客户、定向推荐商品。也正是这些数据的二次利用给他们提供了大量价值,促进了这些企业的发展,推动着他们在营销、供应链与客户服务等领域的管理变革。同时,交易数据并不因为二次利用,而降低其价值;这也是,大数据应用与传统资源使用不同的地方。 数据的“混搭”分析,推动着商业发展和社会的进步。比如历史天气信息与航班误点信息,这两个不同领域的信息一块儿分析,便可以推算未来几天航班的误点率。再比如,通过神经中枢肿瘤患病率和手机使用时间长短之间的大数据关联分析,来研究神经中枢肿瘤患病率是否与手机使用时间长短有关系等等。 大数据的应用,也促生了很多商业机会。随着大数据时代的到来,形成了很多大数据拥有公司,以及大数据技术公司;数据与技术的结合变促生了很多大数据应用,因此带来了很多商业机会。例如,现在很多商业银行对自己大量客户的交易信息分析,规划新的理财产品,与其他商家合作,联合搞定向促销等等。 再次,大数据时代不再有个人隐私,将形成新的信息安全机制。 现在还经常听到诸如某某窥探我的隐私之类的话语,但是,在大数据时代几乎没有个人隐私,这不是骇人听闻。因为,现在微博、搜索引擎、社交网络、电商购物,已经成了我们生活中必不可少的一部分。根据每个人在互联网上留下的痕迹,通过大数据分析,很容易分析出一个人的爱好、习惯、性格、癖好等等。所以,大家都被“第三只眼”实时监控着,在大数据时代,几乎没有个人隐私! 没有个人隐私,是否就代表每个人可以随便传播别人隐私了呢?答案当然是否定的。因为传播别人隐私是不道德的,甚至是违法的。所以,现在新的信息安全规则正在重新定位,其中一个基调是:让数据使用者承担责任,不能滥用别人的隐私;我个人感觉这也比较合理。 总结 大数据只是“新概念”,并不是“新事物”。过去数据就存在,只是我们没有收集这些数据。但是,现在收集了这些数据,这个世界变得不一样了;它更新了人们过去对数据应用的认识,加快了商业和社会发展的新陈代谢,从中也让大家也看到了很多机会。大数据时代,已经到来。极目远眺,也看不到尽头。 
大数据的主要特征:大量性、多样性、高速性、 价值性。
事实上,所谓“大数据时代”的说法并不新鲜,早在2010年,“大数据”的概念就已由美国数据科学家维克托·迈尔·舍恩伯格系统地提出。他在 大数据时代一书中说,以前,一旦完成了收集数据的目的之后,数据就会被认为已经没有用处了。比如,在飞机降落之后,票价数据就没有用了;一个网络检索命令完成之后,这项指令也已进入过去时。但如今,数据已经成为一种商业资本,可以创造新的经济利益。 数据能够成为一种资本,与移动互联网有密切关系。随着智能手机、平板电脑等移动数码产品的“白菜化”,Wi-Fi信号覆盖的无孔不入,越来越多的人不再有“在线时间”和“不在线时间”之分,只要他们愿意,便可几乎24小时一刻不停地挂在线上;在线交易、在线支付、在线注册等网络服务的普及固然方便了用户,却也让人们更加依赖网络,依赖五花八门的网上平台。 而随着科技的进步,以往需要几盒软盘或一张光盘保存的信息,如今只需一片指甲盖大小的芯片,即可全部储存而且绰绰有余;以往需要电脑、显示器、读卡器等专门设备才能读取的数码信息载体,如今或许只需一部智能手机和一个免费下载的APP第三方应用程序,便可将数据一览无余。 大数据时代的科技进步,让人们身上更多看似平常的东西成为“移动数据库”,如带有存储芯片的第二代银行卡、信用卡,带有芯片读取功能的新型护照、驾驶证、社保卡、图书证,等等。在一些发达国家,官方为了信息录入方便,还不断将多种“移动数据库”的功能组合成一体。 数字化时代使得信息搜集、归纳和分析变得越来越方便,传统的随机抽样被“所有数据的汇拢”所取代,基于随机抽样而变得重要的一些属性,如抽样的精确性、逻辑思辨和推理判断能力,就变得不那么重要,尽可能汇集所有数据,并根据这些数据得出趋势和结论才至为关键。简单说,以往的思维决断模式是基于“为什么”,而在“大数据时代”,则已可直接根据“是什么”来下结论,由于这样的结论剔除了个人情绪、心理动机、抽样精确性等因素的干扰,因此,将更精确,更有预见性。 不过,一些学者指出,由于“大数据”理论过于依靠数据的汇集,那么一旦数据本身有问题,在“只问有什么,不问为什么”的模式下,就很可能出现“灾难性大数据”,即因为数据本身的问题,而做出错误的预测和决策。(如能帮到你,望您采纳!!谢谢!!)
回答
你好 大数据(big data),或称巨量资料,指的是所涉及的资料量规模巨大到无法透过主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。[19]在维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的《大数据时代》[1]中大数据指不用随机分析法(抽样调查)这样捷径,而采用所有数据进行分析处理。大数据的5V特点(IBM提出):Volume(大量)、Velocity(高速)、Variety(多样)、Value(低价值密度)、Veracity(真实性)。[2]
大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。换而言之,如果把大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”。[4]从技术上看,大数据与云计算的关系就像一枚硬币的正反面一样密不可分。大数据必然无法用单台的计算机进行处理,必须采用分布式架构。它的特色在于对海量数据进行分布式数据挖掘。但它必须依托云计算的分布式处理、分布式数据库和云存储、虚拟化技术。[1]随着云时代的来临,大数据(Big data)也吸引了越来越多的关注。分析师团队认为,大数据(Big data)通常用来形容一个公司创造的大量非结构化数据和半结构化数据,这些数据在下载到关系型数据库用于分析时会花费过多时间和金钱。大数据分析常和云计算联系到一起,因为实时的大型数据集分析需要像MapReduce一样的框架来向数十、数百或甚至数千的电脑分配工作。大数据需要特殊的技术,以有效地处理大量的容忍经过时间内的数据。适用于大数据的技术,包括大规模并行处理(MPP)数据库、数据挖掘、分布式文件系统、分布式数据库、云计算平台、互联网和可扩展的存储系统。
大数据对于企业的应用例子已不胜枚举,在建筑行业里,上海已率先使用IBM,而且规定超过2万平的建筑必须使用IBM;在电商行业里,各大网站后台对于每件商品都有浏览量、销售量甚至评价统计;在金融行业里,更要实时掌握社会平均利润率以控制各项利率;在财会行业里,我们要掌握实时数据变化来更好地做出决断建立企业大数据部门是一项挑战,挑战我们的以下几个方面:一、我们要通过大数据达到什么样的目的;二、如何收集数据;三、如何分析数据;四、数据成果的使用范围等。这是对我们的考验,更是我们的机遇,做成并维护好大数据系统,将令我们受益终