caixiaoa
温度是一个和人们生活环境密切相关物理量,也是在其他研究、生产、科研、生活中需要测量和控制的物理量,同时也是最基本的环境参数。人们的生活与坏境温度息息相关,物理、化学、生物等科学都离不开温度。像太阳能热水器、电力、石油、农业大棚经常需要对环境温度进行检测,并根据实际的要求对温度进行控制。例如,许多太阳能热水器中,需要通过温度检测来控制其水泵运作;在农业大棚中,通过温度检测来判断是否合适农作物种植与生长;许多电子设备都有额定温度单位,没有合适的温度会使电子产品造成故障等等。传统的测量不仅费时费力。现在由于单片机的加入,使得测温更加精确,并且方式更多。对温度检测的方法也不同。传统的检测温度方式不仅单一,而且达不到很多的精度要求,但是现在加入了单片机,可以通过单片机进行数据检测、保存、控制、运算等等。如先前的太阳能热水器的温度检测,只能单单看到集热器和水箱的温度,随着单片机的发展,并且加入了单片机,可以通过N通道来达到更精确的温度,并做出更精确更多的测温。 
热电致冷器件特别适合于小热量和受空间限制的温控领域。改变加在器件上的直流电的极性即可变致冷为加热,而吸热或放热率则正比于所加直流电流的大小。Pe1tier 温控器的设定温度可以在一个较宽的范围内任意选择,可选择低于或高于环境温度。 在本系统中我们选用了天津蓝天高科电源有限公司生产的半导体致冷器件 TES1-12739,其最大温差电压 7V,最大温差电流9A最大致冷功率7W。 5 其它部分 系统采用Samsung(三星)公司生产的真空荧光数码显示屏 VFD用来实时显示当前温度,以观察控制效果。键盘和串行通信接口用来设定控制温度和调整PID参数。系统电路原理图如图3所示。 2 系统软件设计 系统开始工作时,首先由单片机控制软件发出温度读取指令,通过数字温度传感器 DS18B20 采样被控对象的当前温度值T1并送显示屏实时显示。然后,将该温度测量值与设定值T比较,其差值送 PID控制器。PID 控制器处理后输出一定数值的控制量,经DA 转换为模拟电压量,该电压信号再经大电流驱动电路,提高电流驱动能力后加载到半导体致冷器件上,对温控对象进行加热或制冷。加热或制冷取决于致冷器上所加电压的正负,若温控对象当前温度测量值与设定值差值为正,则输出负电压信号,致冷器上加载负电压温控对象温度降低;反之,致冷器上加载正向电压,温控对象温度升高。上述过程:温度采样-计算温差-PID调节-信号放大输出周而复始,最后将温控对象的温度控制在设定值附近上下波动,随着循环次数的增加,波动幅度会逐渐减小到某一很小的量,直至达到控制要求。为了加快控制,在进入PID控制前加入了一段温差判断程序。当温度差值大于设定阈值Δt时,系统进行全功率加热或制冷,直到温差小于Δt才进入PID控制环节。图4为系统工作主程序的软件流程图. 3 结论 本文设计的基于单片机数字PID控制的精密温度控制系统,在实际应用中取得了良好的控制效果,温度控制精度达到±1℃。经48小时连续运行考验,系统工作稳定,有效地降低了辐亮度标准探测器的温度系数,使辐亮度标准探测器在温度变化较大的环境中也能保持其高精度,为实现基于探测器的高精度辐射定标的广泛应用奠定了基础。 本文作者创新点:在原来基于PC的PID温控系统的基础上,设计了由单片机、数字式温传感器DS18B20和半导体致冷器组成的精密温度控制系统。该温控系统的应用为高精度光辐射测量仪器-辐亮度标准探测器的小型化、智能化提供了有利条件。
温度变化范围不大的用DS18B20 (-55~85)好象,控制用继电器或者其它的都好,自己做吧,会在其中学到很多东西
一、论文选题的目的和意义 温度控制器是对用冷部位(如空调室、冷冻水、库温等)的温度及其波动范围进行控制的电开关。根据制冷装置的大小和供冷方式的不同,温度继电器电路的电控对象亦不同。例如,对小型制冷装置(如空调器、冷饮水机、电冰箱)温度控制器可以根据设定温度直接控制压缩机电机的停开 二、国内外关于该论题的研究现状和发展趋势 国外对温度控制技术研究较早,始于20世纪70年代。先是采用模拟式的组合仪表,采集现场信息并进行指示、记录和控制。80年代末出现了分布式控制系统。目前正开发和研制计算机数据采集控制系统的多因子综合控制系统。现在世界各国的温度测控技术发展很快,一些国家在实现自动化的基础上正向着完全自动化、无人化的方向发展。 我国对于温度测控技术的研究较晚,始于20世纪80年代。我国工程技术人员在吸收发达国家温度测控技术的基础上,才掌握了温度室内微机控制技术,该技术仅限于对温度的单项环境因子的控制。我国温度测控设施计算机应用,在总体上正从消化吸收、简单应用阶段向实用化、综合性应用阶段过渡和发展。在技术上,以单片机控制的单参数单回路系统居多,尚无真正意义上的多参数综合控制系统,与发达国家相比,存在较大差距。我国温度测量控制现状还远远没有达到工厂化的程度,生产实际中仍然有许多问题困扰着我们,存在着装备配套能力差,产业化程度低,环境控制水平落后,软硬件资源不能共享和可靠性差等缺点。