wangq8
大概就这样了 参考一下吧 基于landsat-TM影像的专题信息提取 学生姓名:XX 学号:20085080079 院系:城市与环境科学学院 专业:XX 指导教师:XX 职称:助教 摘 要:本文以沈阳地区为研究区,利用光谱信息提取水体、植被,采用基于灰度共生矩阵的纹理量的分类法,通过TM5波段提取灰度共生矩阵和灰度联合矩阵,计算并提取最能反映类别差异的纹理量值将光谱信息混淆的水田、旱田、居民地用分离,得到最终的分类结果。结果表明:将纹理特征应用于图像分类中可区分光谱混淆的地类,光谱与纹理特征结合得到的分类精度要高于单纯光谱的分类精度。 关键词:遥感影像;光谱特征;纹理特征;灰度共生矩阵;分层提取;土地利用 Abstract:Based on the study of shenyang area for using spectral information extraction,water,vegetation,based on gray symbiotic matrix of the texture classification,through the TM5 band extraction graylevel co-occurrence matrix and gray,and joint matrix extraction can reflect the differences between vector-valued texture category will confuse the paddy fields,spectral information structure,separation,with residents of the final results of the Results show that: the texture characteristics will be applied to image classification can distinguish the confusion of spectral spectrum and texture feature combination,the classification accuracy than pure spectral classification Key words:remote sensing image;spectrum feature;texture feature;text gray-level co-occurrence matrix;layered extraction;land-use 引言 遥感图像信息专题特征的提取,需要对TM图像的光谱信息和纹理信息进行综合分析,以达到提高影像分类精度的目的[1] 。在自然资源调查中,遥感图像已成为重要的空间数据源,其中TM图像信息是进行土地利用/覆盖变化动态监测的重要依据。常规提取TM图像信息主要是利用影像的光谱分辨率进行的,难以正确区分光谱易混淆的地物,例如菜地与其他耕地类型。 提取TM图像中易混淆地物信息,可以充分利用影像的空间分辨率及影像上丰富的纹理信为了息来完成信息提取。纹理分析方法在许多领域都有重要的应用,吴高洪等[2]为了提高纹理图像分割的边缘准确性和区域一致性以及降低分割错误率,提出了一种基于小波变换进行纹理分割的方法。因此,研究地物在影像上的纹理特征,建立和充分应用基于纹理特征的地物分类及信息提取方法,将是今后研究高分辨率遥感影像信息提取的方向之一[3]。图像分析需要用到影像的灰度和纹理信息,灰度即波谱信息,是最基本的信息,纹理反映了灰度的空间变化情况,它由纹理基元按某种确定的规律或者某种统计规律排列组成。为了能用计算机进行纹理分析和形成统一的尺度,需将纹理量化,以定量反映纹理信息,形成纹理变量和纹理图像以便分析[4]。 1 研究区概况 苏家屯是沈阳市的九个市辖区之一,位于沈阳南部,距沈阳市中心15公里,与抚顺、本溪、辽阳三市毗邻。这里气候适宜,雨量适中,年均气温8度,年均降水量700毫米。物产丰富,蕴藏着丰富的煤石油天然气铁矿石和优质矿泉水等自然资源。苏家屯农业发达,盛产水稻、玉米,是国家确定的现代化农业示范区。本文选择数据源所选取的数据是沈阳地区2001年8月11日TM影像区的子区域。根据沈阳地区的农事历,选择10月上旬的遥感资料为宜。 2 光谱信息 地物的光谱一般是指像素的亮度值,地表的各种地物由于物质组成和结构不同而具有独特的波谱反射和辐射特性,在图像上反映为各类地物在各波段上灰度值的差异。地物光谱响应特征是多光谱遥感影像地物识别最直接,也是最重要的解译元素。 3 纹理特征 纹理也是遥感影像的重要信息,它通过色调或颜色的变化表现细纹或细小的纹案,这种细纹或细小的纹案在某一确定的图像区域中以一定的规律重复出现。 目标地物的纹理特征与航空相片的比例尺和太阳高度角有关。另外,它反映了影像的灰度统计信息、地物本身的结构特征和地物空间排列的关系,是进行目视判读和计算机自动解译的重要基础[5]。许多研究表明,除了原始影像光谱信息以外,加上纹理信息就可以使分析准确性和精度提高[6]。遥感图像中多为无规则纹理,一般采用统计方法进行纹理分析,目前用得较多的统计方法有共生矩阵法、分形维法和马尔可夫随机场法。 所谓灰度共生矩阵是由影像灰度级之间二阶联合条件概率密度所构成的矩阵,反映了影像中任意两点间灰度的空间相关性。其方法是先依据影像的灰度级数和灰度变化情况计算出4个方向(右、下、右上和左下)任意两个灰度级相邻出现的概率矩阵,它能提供多个纹理量,可以从多个侧面描述影像的纹理特征,因而在纹理分类中得到广泛的应用[7]。 4 提取方法 1 数据预处理 本文对沈阳地区遥感影像进行光学增强处理,并采用高通滤波来进行滤波处理对影像进行融合将融合后的影像进行几何校正。本文以1∶5万比例尺地形图为底图,选取均匀地分别在整幅图像内的60个控制点,采用二次多项式纠正模型建立两幅影像的对应关系。配准精度在3个像元以内, 2 土地利用分类体系的确定 参考国家土地利用分类体系,结合研究区土地资源的实际情况,TM影像波谱特征及其分辨率等,把研究区土地利用现状分类系统按二级进行分类,一级类型5个,分别为水体、水田、旱地、居民地、植被。 3 遥感信息提取 遥感图像的某些波段往往存在异物同谱和同物异谱现象,如果把多种地物放到一起考虑,由于这些波段的加入,会使信息提取变得非常复杂,这也正是传统上基于统计特征的监督和非监督分类遇到的难题。而对地物进行分层处理,就可以充分利用各类地物在不同波段的特征,收到较好效果[8,9]。对某一地物进行提取,获得该信息层,与原图像进行逻辑与运算,做掩膜处理,从而将该地物像元从原始图像中去除,以避免它对其他地物提取的影响,从而为以后的信息提取创造了纯净的环境。 1基于地物光谱模型的遥感影像分类 为获得光谱知识,在原始图像上进行采样。在采样过程中考虑到同类地物颜色的差异,如水域的深浅等,每一地类进行了多个样本值的合并,得到地物的综合光谱特征值(如图1)。 图1 地物光谱特征 水体的提取:太阳光照射到水面少部分被反射到空中大部分被入射到水体,入射到水体的光,部分被水体吸收,部分被水中的悬浮物反射,少部分透射到水底。被水底吸收和反射。被悬浮物反射和被水体反射的辐射,部分返回水面,折回到空中。因此,遥感器所接收到的辐射就包括水面反射光,悬浮物反射光,水底反射光和天空反射光(如图2)。由于不同水体的水面性质和水体特性的不同,从而形成传感器上接收到的反射光谱就存在差异,为遥感探测水体提供了基础。在可见光范围内,水体的反射率总体比较低,不超过10%,一般为4%~5%,并随着波长的增大逐渐降低,到6μm处约2%~3%,过了75μm,水体几乎成为全吸收体。因此,在近红外的遥感影像上清澈的水体成黑色。因此在提取水体时图面上黑色部分即为水体。 图2 传感器接收到的光谱 植被的提取:健康植物的波谱曲线有明显的特点(如图3),在可见光的55μm附近有一个反射率为10%~20%的小反射峰。在45μm和65μm附近有两个明显的吸收谷。在7~8μm是一个陡坡,反射率急剧增高。在近红外波段8~3μm之间形成一个高的,反射率可达40%或更大的反射峰。在45μm、95μm和6~7μm处有三个吸收谷。它们分别受叶子色素,细胞构造,含水量等的影响。因此,在对TM影像上的植被进行提取时,要考虑以上因素。 图3 健康植被的光谱特征 2基于纹理信息的分类 在图1中容易看到水田、旱地、居民地有很大的光谱相似度,因此需要根据纹理特征进行提取。 本文用水体和植被信息分别对原始影像做掩膜,再结合纹理信息作监督分类提取居民地、水田和旱地。为了突出图像的纹理,提高对图像的解译和分析能力,在对图像进行纹理分析之前,利用ErdasImagine软件对掩膜后的影像进行了增强处理。 为了进行纹理分类,首先必须提取各类的纹理特征。试验中先提取各类样本,统计各种类纹理特征,再找出最大差异的纹理量,作为分类特征量进行分类(如图4)。纹理特征的提取需考虑到窗口的大小、方向和步长。本文利用TM第5波段的纹理特征,采用了3X3大小的窗口、四个方向的均值[10]、步长为1来对纹理值(包括角二阶距、对比度、熵、相关)进行特征统计。 图4 纹理样本图 本文所有的纹理分析均在M0上进行,主要目标是实现对输入遥感影像进行纹理分析,输出纹理分析的结果,以便通过使用结果,以不同的结合方式辅助分类作对比研究。从图5中我们可以看到,3种地类在ASM纹理特征量上差异最大,COR上次之,因此取用ASM、COR特征值,对3种地物加以提取。 图5 3种纹理特征曲线 旱田的提取:从纹理曲线中可以看出旱田的ASM量与水田、居民地有很大的差异,因此通过实验对ASM进行阈值设定来提取旱田。 居民地和水田的区分:采用基于纹理特征和光谱特征相结合的方法,对居民地进行提取。水田和居民地在ASM特征量上,有着较大的差异,但仔细观察可以发现,在去除了旱田的干扰后,水田和居民地在COR特征量上也有着很大的差异。同时一些研究提出了(归一化建筑指数)[11]:NDVI=(TM 5- TM 4)/(TM 5+ TM 4)来对居民地进行提取(见表1)。从表2中可以看出,这种方法并不适合本文的研究区,但是对原始的光谱特征信息进行分析可以发现,在只存有水田和居民地的图像上,两者在TM5上的亮度值差距很大。综上所述,可以对COR和TM5的亮度值进行阈值设定提取居民地,将其与水田相分离。 表1 5种地物的NDVI指数 指标 水体 水田 旱地 居民地 植被 NDVI 0.24271 0.218619 0.380397 0.231489 0.166337 5 精度评价 衡量分类精度最广泛的方法是由Congalton提出的误差矩阵法(error matrix),为了评价分类试验精度,本文采用随机抽样方法抽取400个点作正确率评价,通过对原图的目视判读结合实地考察对结果进行正确率评价,建立混淆矩阵,计算其Kappa系数(见表2),在ERDAS监督分类中总正确率为4 %(见表3),两者相比较可以看出,基于光谱和纹理特征的信息分层提取方法能够很好的对研究区影象进行分类。 表2 光谱纹理信息分类精度% 居民地 水田 旱地` 水体 植被 居民地 水田 旱地 水体 植被 总合 正确率/% 82 4 2 1 1 92 2 7 99 2 1 1 109 8 5 3 113 1 1 123 8 1 0 0 35 1 37 6 1 1 1 1 36 39 3 总正确率=5% Kappa系数=87 表3 EARDS监督分类精度 居民地 水田 旱地` 水体 植被 居民地 水田 旱地 水体 植被 总合 正确率/% 3123 240 107 24 63 3577 88 39 7481 569 176 6 1363 78 81 112 1477 99 32 8723 86 5 1 39 202 1067 4 1801 82 7 0 2 3 379 379 97 总正确率=4 % 6 结语 (1)试验表明,对地物进行分层处理,就可以充分利用各类地物在不同波段的特征。避免已提取地物对其他地物提取的干扰,为后续信息提取创造了纯净的环境;同时还可以有效地减少了漏分和误分,提高分类正确率。本文采用此方法对建设用地信息提取,获得较为满意的效果。 (2)综合运用光谱知识、纹理信息对于仅基于遥感多光谱信息的传统分类方法,能够更有效地提取出土地利用类型信息,精度有了一定提高。 (3)本文在进行纹理分析时,仅使用了单波段的影象数据,对于多波段影象数据未能充分利用; TM全色波段纹理清晰,如能加以利用,会对分类精度的提高有一定的帮助。 参考文献 [1] 梅安新,彭望琭,秦其明遥感导论[M]北京,高等教育出版社, [2] 吴高洪,章毓晋,林行刚等利用小波变换和特征加权进行纹理分割[J]中国图像图形学报,2001,6(4):333- [3] 张禾基于纹理特征的遥感影像居民地自动提取方法[J]江汉石油职工大学学报,2007,(4):93-96 [4] 黄桂兰,郑肇葆,杨敏一种基于共生矩阵法的影像纹理分类方法[J]测绘通报,1996,(3):28- [5] 周廷刚,郭达志,盛业华灰度矢量多波段遥感影像纹理特征及其描述[J]西安科技学院学报,2000,2(4):336- [6] 舒宁关于多光谱和高光谱影像的纹理问题[J]武汉大学学报,2004,29(4):292- [7] 武文波,陈静基于ETM+的遥感影像信息提取研究[J]甘肃农业大学学报2007,43(4) [8] 李四海,恽才兴土地覆盖遥感专题信息的分层提取方法及其应用[J]遥感技术与应用,1999,(4): [9] 柴芸甘肃省沙化土地监测研究[J]甘肃农业大学学报,2003,38(3):296~ [10] Treitz P,Howarth PIntegrating spectral spatial andTerrain variables for forest ecosystem classification[J]Photogrammetric Engineering Remote Sensing,2000,66(3):305- [11] 查勇,倪绍祥,杨山一种利用图像自动提取城镇用地信息的有效方法[J]遥感学报,2003,(1):38- 标题 XXXXXXXXXXXXXX(宋体三号字加黑,居中) 学生姓名:XX 学号:XXX(五号宋体字不加黑,居中) XXXX院(系) XX专业(五号宋体字不加黑,居中) 指导教师:XXX 职称:XXX(五号宋体字不加黑,居中) (空两格)摘 要(黑体小四):具体内容(楷体小四号字不加黑) (空两格)关键词(黑体小四): **;**;** (楷体小四号字不加黑) (空一行) Abstract(Times New Roman小四加黑): 具体内容(Times New Roman小四不加黑) Key Words(Times New Roman小四加黑):**;**;** (Times New Roman小四不加黑) 前言(宋体小三号加黑) 一、政府信息公开制度概述(一级标题宋体四号字加黑) (一)政府信息公开的内涵(二级标题仿宋体小四号字加黑) 1.政府信息公开(三级标题宋体小四号字) 正文内容(宋体小四号不加黑)、图表说明(宋体小五号字不加黑) 
森林资源调查中SPOT5遥感图像处理方法探讨 王照利、黄生、张敏中、马胜利 (国家林业局西北林业规划设计院,遥感计算中心,西安710048) 本文发表于<陕西林业科技>2005 N1 P27-29,55 摘要: 目前,多光谱、高空间分辨率的SPOT5卫星遥感数据被广泛应用到森林资源调查中。本文结合SPOT5遥感数据的特点,根据森林资源调查的需要,从遥感数据的正射校正、波段组合、融合处理和数据变换处理等方面探讨了SPOT5数据的处理和信息提取。探讨性地提出了适应于森林资源调查的SPOT5遥感数据处理方法。 关键词:SPOT5 遥感数据,森林资源调查、数据处理 DISCUSSION ON SPOT5 IMAGE DATA PROCESSING FOR FOREST INVENTORY Wang Zhaoli, Huangsheng,Zhangminzhong,Ma Shengli (Northwest Institute for Forest Inventory, Planning &Design, Xi’an China 710048) Abstract: Now days, high spatial resolution and multispectral SPOT5 image data are widely applied in forest inventory in C Based on the characteristics of SPOT5 image and requirements of forest inventory, this paper discusses the processing procedures of ordering image data, ortho-rectification, image bands composition and image data The complete steps of image processing for forest inventory are Key words: SPOT5 image data,forest inventory, data processing 前言 卫星遥感影像具有空间宏观性、视角广、多分辨率(光谱和空间)、多时相、周期性、信息量丰富等特点,所以卫星遥感影像既可以提供森林资源的宏观空间分布信息又能提供局部的详细信息以及随时间、空间变化的信息等[1]。目前在林业领域卫星遥感数据被广泛的应用于不同尺度层次的森林资源调查、资源监测、病虫害、火灾监测等方面。 2002年5月法国SPOT地球观测卫星系列之5号卫星(即SPOT5星)发射。SPOT5遥感数据的多光谱波段空间分辨率为10米(短波红外空间分辨率为20米),但全色波段空间分辨率达到5米。SPOT5遥感数据的高空间分辨率和多光谱分辨率为森林资源调查提供了丰富的、可靠的、高精度的基础数据源。从性价比分析,在其他高分辨率遥感数据目前比较昂贵的状况下,SPOT5遥感数据比较适宜应用于大面积的森林资源调查,可大幅度的森林调查的减少外业工作量、提高工作效率。在我国SPOT5卫星数据已被大量地应用于森林资源调查工作中,尤其,是在森林资源“二类”调查中被作基本的森林资源信息源提取各类信息。针对于将多光谱分辨率和高空间分辨率的SPOT5遥感数据应用于森林资源调查的数据处理技术和方法鲜有报道。本文总结工作实践,结合SPOT5遥感数据的特点,根据森林资源调查的需要,从遥感数据的订购、正射校正、波段组合、融合处理和数据变换处理等方面探讨了SPOT5数据的基本处理方法。 1.SPOT5卫星遥感数据特点 SPOT卫星系统采用线性阵列传感器和推扫式扫描技术,具有旋转式平面镜可以进行倾斜观察获得倾斜图像和立体像对。采用与太阳同步的近极地的椭圆形轨道,轨道高度约832Km,轨道倾角7o ,每天绕地球14圈多,重复覆盖周期26天[2]。由于有倾斜观测功能,使重复覆盖周期减少到2-3天。SPOT5卫星载有2台高分辨率几何成像仪(HRG)、1台高分辨率立体成像装置(HRS)和1台宽视域植被探测仪(VGT)。高分辨率几何成像仪的波段选择是总结了多年的研究成果,认为HRG的波段设置(见表1)足以取得辨别作物和植被类型的最佳效果。本文主要探讨HRG高空间分辨率数据的处理。 2.SPOT5数据的处理方法和过程 SPOT5数据处理工作流程: 1 遥感数据的订购 订购数据时,用户需向数据代理商提供购买区域的四个角的大地坐标或者数据的景号(PATH/ROW)。特别应该注意数据订购时间和用户拿到数据之间有时间差,间隔时间长短因用户的要求、天气、卫星重复覆盖周期而异。相对于其他卫星数据,比较有利的一面是SPOT5卫星装置有旋转式平面镜可以进行倾斜观察,用户可向代理商申请红色编程提前得到调查区域的遥感数据,但要支付编程费。对于遥感数据的时相、云量、入射角、阴影量、是否购买高空间分辨率的全色波段等用户根据自己具体的工作需要向代理商提出限制要求。 根据我们对SPOT5遥感数据的使用,对于森林资源调查,北方9,10月份和11月初的遥感影像比较适宜。代理商向用户提供经过处理的不同级别的影像产品,在森林资源调查中建议购买SPOT1A级产品,用户可根据自己的工作需要进行处理,同时也可减少费用。 2 基础数据准备 大比例尺地形图和高精度DEM是进行SPOT5遥感数据高精度正射校正必需的基础地理数据。建议购买1:10000地形图和1:25000数字高程模型(DEM)。 将1:1万地形图扫描,扫描分辨率设置为300DPI。将扫描好的地形图进行几何精纠正,纠正精度控制在3毫米内。从测绘部门购买的1:1万地形图为北京54坐标系3度分带高斯克吕格投影,而1:5万DEM为北京54坐标系6度分带投影。在数据准备时,将校正好的1:1万地形图通过换带转换转成和DEM一致的6度分带投影。 对于没有1:1万地形图的地区,建议使用差分GPS接收机采集地面控制点。 3几何正射校正 正射校正过程应用了法国SPOT公司发行的GEOIMAGE软件。GEOIMAGE软件有针对SPOT5卫星数据开发的SPOT5物理模型。模型模块自动读取DEM信息。SPOT 物理模型可读取卫星在获取遥感数据的瞬间状态参数,这些参数存贮在数据的头文件中[3]。卫星状态参数包括:卫星成像瞬间的经纬度、高度、倾角等。卫星状态参数能够帮助提高几何校正的精度。 以校正好的1:1万地形图为基准,在影像图上找出和地形图上地物相匹配的明显地物作为地面控制点。在进行正射校正时,应先进行全色波段数据校正,然后以校正好的全色波段数据为基准进行多光谱数据校正。以全色波段数据为基准校正多光谱波段就比较容易校正,且能提高两者的匹配精度。地面控制点应分布均匀,影像的边缘部分布要有控制点分布,同时在不同的高程范围最好都有控制点。地面控制点的数量因地形地貌的复杂程度而定,根据我们的经验,一景60KmX60Km的SPOT5数据,一般地势平缓的地区20个左右控制点即可达到满意的结果,在高山区25个左右控制点就可使正射校正精度满足要求。重采样方法采用双线性内插法。 4 辐射校正 用户购买的SPOT5的各级数据,数据提供商已经根据卫星的记录参数对遥感数据做了辐射校正,即消除了传感器自身引起的、大气辐射引起的辐射噪声。若果影像存在薄雾或地形高差较大引起的辐射误差情况,用户应进一步进行辐射校正处理。薄雾的简单消除原理是基于近红外波段不受大气辐射影响,清澈的水体或死阴影区的数值应为零。从各波段数据中减去近红外波段的水体或阴影的不为零值。地形起伏引起的辐射误差校正公式: f (x,y)=g(x,y)/cosa,g(x,y)为坡度为a的倾斜面上的地物影像;f (x,y)为校正后的影像。由于坡度因子参与校正所以需要DEM支持。 5 波段组合 根据SPOT5数据波谱特征(表1),各波段分别记录反映了植被的不同特征方面:B4(SWIR)短波红外反映植物和土壤的含水量,利于植被水分状况和长势分析;B3(NIR)近红外波段对植被类别、密度、生长力、病虫害等的变化敏感;B2(RED)红光波段对植被的覆盖度、植被的生长状况敏感;B1(VIS)可见光波段对植物的叶绿素和叶绿素浓度敏感。经过比较分析和实际应用发现SPOT5的B3、B4、B2波段组合对植被类型的识别要优于B3、B2和B1的组合。但由于B4波段的空间分辨率为20米,使B342组合对植被空间几何细节表达没有B321组合清晰,例如林缘界线信息表达方面B321要优于B342。 6 影像数据融合 对于购买有高空间分辨率全色波段数据的用户,进行数据融合是必不可少的。影像数据融合能够综合不同波段、不同空间分辨率数据(层)的特征,融合后的数据具有更丰富、更可靠的信息[4]。 根据影像数据融合的水平阶段,影像融合分为:像元级、特征级和决策级三个层次。为了最大限度的从SPOT5遥感数据中提取森林植被信息,应进行像元级的数据融合,将5米的全色波段和10米多光谱数据进行融合。融合得到的新数据既具有全色波段数据的高空间分辨率特征又具有多光谱特征。 像元级数据融合的方法多种多样,根据数据融合的目的,即最大限度的突显森林植被信息,应选取B4、B3、B2和PAN波段,根据我们的试验Brovey 融合算法方法比较理想: 7遥感影像地图 将融合好的数据按Rfused、Gfused、Bfused组合,叠加上行政界线、公里格网、坐标、比例尺等辅助信息,按1:1万地形图分幅生成1:1万纸质图作为外业手图。 结果和讨论 1 几何精度 利用SPOT5物理模型,采用1:1万地形图和5万DEM ,经过正射校正处理,可使影像的几何精度控制在2个像元内(<10米),达到1:1万制图标准要求。为以遥感影像为基础信息源提取林分调查因子、区划林班界线生成大比例尺的林相图、森林分布图提供了几何精度保障。 2 波段选择 对于没有全色波段的情况,SPOT5数据的B342组合有利于森林植被类型的识别。在应用遥感技术进行森林资源调查区划中,林分类型信息提取是最为重要的环节,所以B342波段组合是小班区划和外业手图的最佳组合。 3 融合效果 融合数据技术使SPOT5遥感影像既具有全色波段的高空间分辨率又拥有多光谱数据的光谱分辨率,丰富了遥感影像的信息量。采用Brovey算法使SPOT5遥感影像从色彩、纹理等方面增强了影像的可判读性,提高了小班因子正判率和林分小班的区划精度。 参考文献 1.周成虎,杨晓梅,骆剑承等《遥感影像地学理解与分析》,科学出版社,北京,2001,3- 2.赵英时《遥感应用分析原理与方法》,科学出版社,北京,88-90 3.北京视宝卫星图像有限公司《专业制图工作室GEOIMAGE用户指南》,2004,68- 4.Christine P Geometric Aspects of Multisensor Image Fusion for Topographic Map Updating in The Humid Tropics, ITC Publication, 1996,51- 21世纪遥感与GIS的发展 来源: 李德仁 时间: 2005-08-11-23:09 浏览次数: 79 21世纪遥感与GIS的发展 李德仁 (武汉大学测绘遥感信息工程国家重点实验室,武汉市珞瑜路129号,430079) 摘要:在20世纪,人类的一大进步是实现了太空对地观测,即可以从空中和太空对人类赖以生存的地球通过非接触传感器的遥感进行观测,并将所得到的数据和信息存储在计算机网络上,为人类社会的可持续发展服务。在短短的30年中,遥感和GIS作为一个边缘交叉学科已发展成为一门科学、技术和经济实体。本文深入地论述了21世纪中遥感的6大发展趋势和GIS的5个发展特征。 关键词:发展趋势;航空航天遥感;地理信息系统;对地观测 中图法分类号:P208;P9 随着计算机技术、空间技术和信息技术的发展,人类实现了从空中和太空来观测和感知人类赖以生存的地球的理想,并能将所感知到的结果通过计算机网络在全球流通,为人类的生存、繁荣和可持续发展服务。在20世纪后半叶,遥感和地理信息系统作为一门新兴的科学和技术,迅速地成长起来。 1 遥感技术的主要发展趋势 1 航空航天遥感传感器数据获取技术趋向三多(多平台、多传感器、多角度)和三高(高空间分辨率、高光谱分辨率和高时相分辨率) 从空中和太空观测地球获取影像是20世纪的重大成果之一,短短几十年,遥感数据获取手段迅猛发展。遥感平台有地球同步轨道卫星(35000km)、太阳同步卫星(600—1000km)、太空飞船(200—300km)、航天飞机(240—350km)、探空火箭(200—1000km),并且还有高、中、低空飞机、升空气球、无人飞机等;传感器有框幅式光学相机、缝隙、全景相机、光机扫描仪、光电扫描仪、CCD线阵、面阵扫描仪、微波散射计雷达测高仪、激光扫描仪和合成孔径雷达等,它们几乎覆盖了可透过大气窗口的所有电磁波段。三行CCD阵列可以同时得到3个角度的扫描成像,EOS Terra卫星上的MISR可同时从9个角度对地成像。 卫星遥感的空间分辨率从Ikonos Ⅱ的1m,进一步提高到Quckbird(快鸟)的62m,高光谱分辨率已达到5—6nm,500—600个波段。在轨的美国EO-1高光谱遥感卫星,具有220个波段,EOS AM-1(Terra)和EOS PM-1(Aqua)卫星上的MODIS具有36个波段的中等分辨率成像光谱仪。时间分辨率的提高主要依赖于小卫星技术的发展,通过发射地球同步轨道卫星和合理分布的小卫星星座,以及传感器的大角度倾斜,可以以1—3d的周期获得感兴趣地区的遥感影像。由于具有全天候、全天时的特点,以及用INSAR和D-INSAR,特别是双天线INSAR进行高精度三位地形及其变化测定的可能性,SAR雷达卫星为全世界各国所普遍关注。例如,美国宇航局的长远计划是要发射一系列太阳同步和地球同步的长波SAR,美国国防部则要发射一系列短波SAR,实现干涉重访问间隔为8d、3d和1d,空间分辨率分别为20m、5m和2m。我国在机载和星载SAR传感器及其应用研究方面正在形成体系。“十五”期间,我国将全方位地推进遥感数据获取的手段,形成自主的高分辨率资源卫星、雷达卫星、测图卫星和对环境与灾害进行实时监测的小卫星群。 2 航空航天遥感对地定位趋向于不依赖地面控制 确定影像目标的实地位置(三维坐标),解决影像目标在哪儿(Where)是摄影测量与遥感的主要任务之一。在已成功用于生产的全自动化GPS空中三角测量的基础上,利用DGPS和INS惯性导航系统的组合,可形成航空/航天影像传感器的位置与姿态的自动测量和稳定装置(POS),从而可实现定点摄影成像和无地面控制的高精度对地直接定位。在航空摄影条件下的精度可达到dm级,在卫星遥感的条件下,其精度可达到m级。该技术的推广应用,将改变目前摄影测量和遥感的作业流程,从而实现实时测图和实时数据库更新。若与高精度激光扫描仪集成,可实现实时三维测量(LIDAR),自动生成数字表面模型(DSM),并可推算出数字高程模型(DEM)。 美国NASA在1994年和1997年两次将航天激光测高仪(SLA)安装在航天飞机上,企图建立基于SLA的全球控制点数据库,激光点大小为100m,间隔为750m,每秒10个脉冲;随后又提出了地学激光测高系统(GLAS)计划,已于2002年12月19日将该卫星IICESat(cloud and land elevation satellite)发射上天。该卫星装有激光测距系统、GPS接收机和恒星跟踪姿态测定系统。GLAS发射近红外光(1064nm)和可见绿光(532nm)的短脉冲(4ns)。激光脉冲频率为40次/s,激光点大小实地为70m,间隔为170m,其高程精度要明显高于SRTM,可望达到m级。他们的下一步计划是要在2015年之前使星载LIDAR的激光测高精度达到dm和cm级。 法国利用设在全球的54个站点向卫星发射信号,通过测定多普勒频移,以精确解求卫星的空间坐标,具有极高的精度。测定距地球1300km的Topex/Poseidon卫星的高度,精度达到±3cm。用来测定SPOT 4卫星的轨道,3个坐标方向达到±5cm精度,对于SPOT 5和Envisat,可望达到±1m精度。若忽略SPOT 5传感器的角元素,直接进行无地面控制的正射像片制作,精度可达到±15m,完全可以满足国家安全和西部开发的需求。 3 摄影测量与遥感数据的计算机处理更趋向自动化和智能化 从影像数据中自动提取地物目标,解决它的属性和语义(What)是摄影测量与遥感的另一大任务。在已取得影像匹配成果的基础上,影像目标的自动识别技术主要集中在影像融合技术,基于统计和基于结构的目标识别与分类,处理的对象既包括高分辨率影像,也更加注重高光谱影像。随着遥感数据量的增大,数据融合和信息融合技术逐渐成熟。压缩倍率高、速度快的影像数据压缩方法也已商业化。我国学者在这些方面取得了不少可喜的成果。 4 利用多时像影像数据自动发现地表覆盖的变化趋向实时化 利用遥感影像自动进行变化监测(What change)关系到我国的经济建设和国防建设。过去人工方法投入大,周期长。随着各类空间数据库的建立和大量新的影像数据源的出现,实时自动化监测已成为研究的一个热点。 自动变化监测研究包括利用新旧影像(DOM)的对比、新影像与旧数字地图(DLS)的对比来自动发现变化和更新数据库。目前的变化监测是先将新影像与旧影像(或数字地图)进行配准,然后再提取变化目标,这在精度、速度与自动化处理方面都有不足之处。笔者提出了把配准与变化监测同步的整体处理[1]。最理想的方法是将影像目标三维重建与变化监测一起进行,实现三维变化监测和自动更新。进一步的发展则是利用智能传感器,将数据处理在轨完成,发送回来的直接为信息,而不一定为影像数据。 5 摄影测量与遥感在构建“数字地球”、“数字中国”、“数字省市”和“数字文化遗产”中正在发挥愈来愈大的作用 “数字地球”概念是在全球信息化浪潮推进下形成的。1999年12月在北京成功地召开了第一届国际“数字地球”大会后,我国正积极推进“数字中国”和“数字省市”的建设,2001年国家测绘局完成了构建“数字中国”地理空间基础框架的总体战略研究。在已完成1∶100万和1∶25万全国空间数据库的基础上,2001年全国各省市测绘局开始1∶5万空间数据库的建库工作。在这个数据量达11TB的巨型数据库中,摄影测量与遥感将用来建设DOM(数字正射影像)、DEM(数字高程模型)、DLG(数字线划图)和CP(控制点数据库)。如果要建立全国1m分辨率影像数据库,其数据量将达到60TB。如果整个“数字地球”均达到1m分辨率,其数据量之大可想而知。本世纪内可望建成这一分辨率的数字地球。 “数字文化遗产”是目前联合国和许多国家关心的一个问题,涉及到近景成像、计算机视觉和虚拟现实技术。在近景成像和近景三位量测方面,有室内各种三维激光扫描与成像仪器,还可以直接由视频摄像机的系列图像获取目标场三维重建信息。它们所获取的数据经过计算机自动处理后,可以在虚拟现实技术支持下形成文化遗迹的三维仿真,而且可以按照时间序列,将历史文化在时间隧道中再现,对文化遗产保护、复原与研究具有重要意义。 6 全定量化遥感方法将走向实用 从遥感科学的本质讲,通过对地球表层(包括岩石圈、水圈、大气圈和生物圈4大圈层)的遥感,其目的是为了获得有关地物目标的几何与物理特性,所以需要通过全定量化遥感方法进行反演。几何方程式是有显式表示的数学方程,而物理方程一直是隐式。目前的遥感解译与目标识别并没有通过物理方程反演,而是采用了基于灰度或加上一定知识的统计、结构和纹理的影像分析方法。但随着对成像机理、地物波谱反射特征、大气模型、气溶胶的研究深入和数据积累,多角度、多传感器、高光谱及雷达卫星遥感技术的成熟,相信在21世纪,估计几何与物理方程式的全定量化遥感方法将逐步由理论研究走向实用化,遥感基础理论研究将迈上新的台阶。只有实现了遥感定量化,才可能真正实现自动化和实时化。 2 GIS技术的主要发展趋势 1 空间数据库趋向图形、影像和DEM三库一体化和面向对象[2] GIS发展曾经历过栅格、矢量两个不同数据结构发展阶段,目前随着高分辨率卫星遥感数据的飞快增长和数字地球、数码城市的需求,形成了面向对象的数据模型和三库(图形矢量库、影像栅格库和DEM格网库)一体化的数据结构。这样的数据库结构使GIS的发展更加趋向自然化、逼真化,更加贴近用户。以面向应用的GIS软件为前台,以大型关系数据库(Oracle 8i,9i等)为后台数据库管理,成为当前GIS技术的主流趋势。 2 空间数据表达趋向多比例尺、多尺度、动态多位和实时三维可视化 在传统的GIS中,空间数据是以二维形式存储并挂接相应的属性数据。目前,空间数据表达的趋势是基于金字塔和LOD(level of detail)技术的多比例尺空间数据库,在不同尺度表示时可自动显示出相应比例尺或相应分辨率的数据,多比例尺数据集的跨度要比传统地图的比例尺大,在显示不同比例尺数据时,可采用LOD或地图综合技术。真三维GIS的空间数据要存储三维坐标。动态GIS在土地变更调查、土地覆盖变化监测中已有较好的应用,真四维的时空GIS将有望从理论研究转入实用阶段。基于三库一体化的时空3D可视化技术发展势头迅猛,已能再PC机上实现GIS环境下的三维建筑物室外室内漫游、信息查询、空间分析、剖面分析和阴影分析等,基于虚拟现实技术的真三维GIS将使人们在现实空间外,可以同时拥有一个Cyber空间。 3 空间分析和辅助决策智能化需要利用数据挖掘方法从空间数据库和属性数据库中发现更多的有用知识 GIS是以应用导向的空间信息技术,空间分析与辅助决策支持是GIS的高水平应用,它需要基于知识的智能系统。知识的获取是专家系统中最困难的任务。随着各种类型数据库的建立,从数据库中挖掘知识成为当今计算机界一个非常引人注目的课题。从GIS空间数据库中发现的知识可以有效的支持遥感图像解译,以解决“同物异谱”和“同谱异物”的问题。反过来,从属性数据库中挖掘的知识又具有优化资源配置等一些列空间分析的功能[3]。尽管数据挖掘和知识发现这一命题仍处于理论研究阶段,但随着数据库的快速增大和对数据挖掘工具的深入研究,其应用前景是不可估量的。 4 通过Web服务器和WAP服务器的互联网和移动GIS将推进联邦数据库和互操作的研究及地学信息服务事业 随着计算机通讯网络(包括有线和无线网)的大容量和高速化,GIS已成为在网络上的分布式异构系统。许多不同单位、不同组织维护管理的既独立又互联互用的联邦数据库,将可提供全社会各行各业的应用需要。因此,联邦数据库和互操作(federal databases & interoperability)问题成为当前国际GIS联合研究的一个热点。互操作意味着数据库中数据的直接共享,GIS规律功能模块的互操作与共享,以及多点之间的相同工作,这方面的研究已显示出明显的成效。未来的GIS用户将可能在网络上缴纳为其需要所选用数据和软件功能模块的使用费,而不必购买这个数据库和整套的GIS软硬件,这些成果产生的直接效果是GIS应用将走向地学信息服务。 目前已兴起的LBS和MLS,即基于位置的服务和移动定位服务,突出地反映了这种变化趋势。它引起的革命性变化使GIS将走出研究院所和政府机关,成为全社会人人具备的信息服务工具。我国目前已有2亿个手机用户,若每人每月为MLS支付10元费用,全国一年的产值将达到240亿。可以预测在不久的将来,地学信息将能随时随地为任何人和任何事情进行4A服务(geo-in-formation for anyone and anything at anywhere and anytime)。 5 地理信息科学的研究有望在本世纪形成较完整的理论框架体系 笔者曾扼要地叙述了地球空间信息科学的7大理论问题[4]:(1)地球空间信息的基准,包括几何基准、物理基准和时间基准;(2)地球空间信息标准,包括空间数据采集、存储与交换标准、空间数据精度与质量标准、空间信息的分类与代码标准、空间信息的安全
国外许多国家有不同的发展情况,我说一下遥感总的发展趋势吧,希望能够对你有些帮助:1、在传感器研制中增加适用的波谱范围2、不断提高传感器的空间分辨率3、遥感图像处理软硬件的不断提高4、多层次遥感的应用5、遥感与地理信息系统的结合6、遥感与全球定位系统的结合7、集成不同遥感信息源8、遥感信息源与非遥感信息源的信息复合和融合技术大量研究。
以前有人写过这个相关的论文,可以参考一下。参考文献:[1]姜景山中国微波遥感发展的新阶段与新任务[A]遥感技术与应用[C][2]姜景山中国微波遥感的现状与未来--微波遥感专辑代序[J]遥感技术与应用,2000,15(2)