哆啦瞄瞄
一切知识都源于无知,一切无知都源于对知识的认知。最根深蒂固的无知,不是对知识的无知,而是对自己无知的无知。下面给大家分享一些关于初二数学试卷及答案解析,希望对大家有所帮助。 一、选择题(每小题3分,9小题,共27分) 1.下列图形中轴对称图形的个数是() 个个个个 【考点】轴对称图形. 【分析】根据轴对称图形的概念求解. 【解答】解:由图可得,第一个、第二个、第三个、第四个均为轴对称图形,共4个. 故选D. 【点评】本题考查了轴对称图形,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合. 2.下列运算不正确的是() .(x2)3=.(﹣2x)3=﹣8x3 【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法. 【分析】本题考查的知识点有同底数幂乘法法则,幂的乘 方法 则,合并同类项,及积的乘方法则. 【解答】解:A、x2?x3=x5,正确; B、(x2)3=x6,正确; C、应为x3+x3=2x3,故本选项错误; D、(﹣2x)3=﹣8x3,正确. 故选:C. 【点评】本题用到的知识点为: 同底数幂的乘法法则:底数不变,指数相加; 幂的乘方法则为:底数不变,指数相乘; 合并同类项,只需把系数相加减,字母和字母的指数不变; 积的乘方,等于把积中的每一个因式分别乘方,再把所得的幂相乘. 3.下列关于分式的判断,正确的是() A.当x=2时,的值为零 B.无论x为何值,的值总为正数 C.无论x为何值,不可能得整数值 D.当x≠3时,有意义 【考点】分式的值为零的条件;分式的定义;分式有意义的条件. 【分析】分式有意义的条件是分母不等于0. 分式值是0的条件是分子是0,分母不是0. 【解答】解:A、当x=2时,分母x﹣2=0,分式无意义,故A错误; B、分母中x2+1≥1,因而第二个式子一定成立,故B正确; C、当x+1=1或﹣1时,的值是整数,故C错误; D、当x=0时,分母x=0,分式无意义,故D错误. 故选B. 【点评】分式的值是正数的条件是分子、分母同号,值是负数的条件是分子、分母异号. 4.若多项式x2+mx+36因式分解的结果是(x﹣2)(x﹣18),则m的值是() A.﹣20B.﹣ 【考点】因式分解-十字相乘法等. 【专题】计算题. 【分析】把分解因式的结果利用多项式乘以多项式法则计算,利用多项式相等的条件求出m的值即可. 【解答】解:x2+mx+36=(x﹣2)(x﹣18)=x2﹣20x+36, 可得m=﹣20, 故选A. 【点评】此题考查了因式分解﹣十字相乘法,熟练掌握十字相乘的方法是解本题的关键. 5.若等腰三角形的周长为26cm,一边为11cm,则腰长为() 或.以上都不对 【考点】等腰三角形的性质. 【分析】分边11cm是腰长与底边两种情况讨论求解. 【解答】解:①11cm是腰长时,腰长为11cm, ②11cm是底边时,腰长=(26﹣11)=, 所以,腰长是11cm或. 故选C. 【点评】本题考查了等腰三角形的性质,难点在于要分情况讨论. 6.如图,在△ABC中,AB=AC,∠BAC=108°,点D在BC上,且BD=AB,连接AD,则∠CAD等于() °°°° 【考点】等腰三角形的性质. 【分析】根据等腰三角形两底角相等求出∠B,∠BAD,然后根据∠CAD=∠BAC﹣∠BAD计算即可得解. 【解答】解:∵AB=AC,∠BAC=108°, ∴∠B=(180°﹣∠BAC)=(180°﹣108°)=36°, ∵BD=AB, ∴∠BAD=(180°﹣∠B)=(180°﹣36°)=72°, ∴∠CAD=∠BAC﹣∠BAD=108°﹣72°=36°. 故选B. 【点评】本题考查了等腰三角形的性质,主要利用了等腰三角形两底角相等,等边对等角的性质,熟记性质并准确识图是解题的关键. 7.如下图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是() .∠BAE=∠ 【考点】全等三角形的性质. 【分析】根据全等三角形的性质,全等三角形的对应边相等,全等三角形的对应角相等,即可进行判断. 【解答】解:∵△ABE≌△ACD,∠1=∠2,∠B=∠C, ∴AB=AC,∠BAE=∠CAD,BE=DC,AD=AE, 故A、B、C正确; AD的对应边是AE而非DE,所以D错误. 故选D. 【点评】本题主要考查了全等三角形的性质,根据已知的对应角正确确定对应边是解题的关键. 8.计算:(﹣2)2015?()2016等于() A.﹣.﹣D. 【考点】幂的乘方与积的乘方. 【分析】直接利用同底数幂的乘法运算法则将原式变形进而求出答案. 【解答】解:(﹣2)2015?()2016 =[(﹣2)2015?()2015]× =﹣. 故选:C. 【点评】此题主要考查了积的乘方运算以及同底数幂的乘法运算,正确掌握运算法则是解题关键. 9.如图,直线a、b相交于点O,∠1=50°,点A在直线a上,直线b上存在点B,使以点O、A、B为顶点的三角形是等腰三角形,这样的B点有() 个个个个 【考点】等腰三角形的判定. 【分析】根据△OAB为等腰三角形,分三种情况讨论:①当OB=AB时,②当OA=AB时,③当OA=OB时,分别求得符合的点B,即可得解. 【解答】解:要使△OAB为等腰三角形分三种情况讨论: ①当OB=AB时,作线段OA的垂直平分线,与直线b的交点为B,此时有1个; ②当OA=AB时,以点A为圆心,OA为半径作圆,与直线b的交点,此时有1个; ③当OA=OB时,以点O为圆心,OA为半径作圆,与直线b的交点,此时有2个, 1+1+2=4, 故选:D. 【点评】本题主要考查了坐标与图形的性质及等腰三角形的判定;分类讨论是解决本题的关键. 二、填空题(共10小题,每小题3分,满分30分) 10.计算(﹣)﹣2+(π﹣3)0﹣23﹣|﹣5|=4. 【考点】实数的运算;零指数幂;负整数指数幂. 【专题】计算题;实数. 【分析】原式第一项利用负整数指数幂法则计算,第二项利用零指数幂法则计算,第三项利用乘方的意义化简,最后一项利用绝对值的代数意义化简,计算即可得到结果. 【解答】解:原式=16+1﹣8﹣5=4, 故答案为:4 【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键. 11.已知a﹣b=14,ab=6,则a2+b2=208. 【考点】完全平方公式. 【分析】根据完全平方公式,即可解答. 【解答】解:a2+b2=(a﹣b)2+2ab=142+2×6=208, 故答案为:208. 【点评】本题考查了完全平方公式,解决本题德尔关键是熟记完全平方公式. 12.已知xm=6,xn=3,则x2m﹣n的值为12. 【考点】同底数幂的除法;幂的乘方与积的乘方. 【分析】根据同底数幂的除法法则:底数不变,指数相减,进行运算即可. 【解答】解:x2m﹣n=(xm)2÷xn=36÷3=12. 故答案为:12. 【点评】本题考查了同底数幂的除法运算及幂的乘方的知识,属于基础题,掌握各部分的运算法则是关键. 13.当x=1时,分式的值为零. 【考点】分式的值为零的条件. 【分析】分式的值为0的条件是:(1)分子为0;(2)分母不为0.两个条件需同时具备,缺一不可.据此可以解答本题. 【解答】解:x2﹣1=0,解得:x=±1, 当x=﹣1时,x+1=0,因而应该舍去. 故x=1. 故答案是:1. 【点评】本题考查了分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可. 14.(1999?昆明)已知一个多边形的内角和等于900°,则这个多边形的边数是7. 【考点】多边形内角与外角. 【分析】根据多边形的内角和计算公式作答. 【解答】解:设所求正n边形边数为n, 则(n﹣2)?180°=900°, 解得n=7. 故答案为:7. 【点评】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理. 15.如图,在ABC中,AP=DP,DE=DF,DE⊥AB于E,DF⊥AC于F,则下列结论: ①AD平分∠BAC;②△BED≌△FPD;③DP∥AB;④DF是PC的垂直平分线. 其中正确的是①③. 【考点】全等三角形的判定与性质;角平分线的性质;线段垂直平分线的性质. 【专题】几何图形问题. 【分析】根据角平分线性质得到AD平分∠BAC,由于题目没有给出能够证明∠C=∠DPF的条件,无法根据全等三角形的判定证明△BED≌△FPD,以及DF是PC的垂直平分线,先根据等腰三角形的性质可得∠PAD=∠ADP,进一步得到∠BAD=∠ADP,再根据平行线的判定可得DP∥AB. 【解答】解:∵DE=DF,DE⊥AB于E,DF⊥AC于F, ∴AD平分∠BAC,故①正确; 由于题目没有给出能够证明∠C=∠DPF的条件,只能得到一个直角和一条边对应相等,故无法根据全等三角形的判定证明△BED≌△FPD,以及DF是PC的垂直平分线,故②④错误; ∵AP=DP, ∴∠PAD=∠ADP, ∵AD平分∠BAC, ∴∠BAD=∠CAD, ∴∠BAD=∠ADP, ∴DP∥AB,故③正确. 故答案为:①③. 【点评】考查了全等三角形的判定与性质,角平分线的性质,线段垂直平分线的性质,等腰三角形的性质和平行线的判定,综合性较强,但是难度不大. 16.用科学记数法表示数为×10﹣4. 【考点】科学记数法—表示较小的数. 【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【解答】解:×10﹣4. 故答案是:×10﹣4. 【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定. 17.如图,点A,F,C,D在同一直线上,AF=DC,BC∥EF,要判定△ABC≌△DEF,还需要添加一个条件,你添加的条件是EF=BC. 【考点】全等三角形的判定. 【专题】开放型. 【分析】添加的条件:EF=BC,再根据AF=DC可得AC=FD,然后根据BC∥EF可得∠EFD=∠BCA,再根据SAS判定△ABC≌△DEF. 【解答】解:添加的条件:EF=BC, ∵BC∥EF, ∴∠EFD=∠BCA, ∵AF=DC, ∴AF+FC=CD+FC, 即AC=FD, 在△EFD和△BCA中, ∴△EFD≌△BCA(SAS). 故选:EF=BC. 【点评】此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL. 注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角. 18.若x2﹣2ax+16是完全平方式,则a=±4. 【考点】完全平方式. 【分析】完全平方公式:(a±b)2=a2±2ab+b2,这里首末两项是x和4这两个数的平方,那么中间一项为加上或减去x和4积的2倍. 【解答】解:∵x2﹣2ax+16是完全平方式, ∴﹣2ax=±2×x×4 ∴a=±4. 【点评】本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解. 19.如图,已知∠MON=30°,点A1,A2,A3,…在射线ON上,点B1,B2,B3,…在射线OM上,△A1B1A2,△A2B2A3,△A3B3A4,…均为等边三角形,若OA2=4,则△AnBnAn+1的边长为2n﹣1. 【考点】等边三角形的性质. 【专题】规律型. 【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出A3B3=4B1A2=8,A4B4=8B1A2=16,A5B5=16B1A2…进而得出答案. 【解答】解:∵△A1B1A2是等边三角形, ∴A1B1=A2B1, ∵∠MON=30°, ∵OA2=4, ∴OA1=A1B1=2, ∴A2B1=2, ∵△A2B2A3、△A3B3A4是等边三角形, ∴A1B1∥A2B2∥A3B3,B1A2∥B2A3, ∴A2B2=2B1A2,B3A3=2B2A3, ∴A3B3=4B1A2=8, A4B4=8B1A2=16, A5B5=16B1A2=32, 以此类推△AnBnAn+1的边长为2n﹣1. 故答案为:2n﹣1. 【点评】本题主要考查等边三角形的性质及含30°角的直角三角形的性质,由条件得到OA5=2OA4=4OA3=8OA2=16OA1是解题的关键. 三、解答题(本大题共7小题,共63分) 20.计算 (1)(3x﹣2)(2x+3)﹣(x﹣1)2 (2)(6x4﹣8x3)÷(﹣2x2)﹣(3x+2)(1﹣x) 【考点】整式的混合运算. 【分析】(1)利用多项式乘多项式的法则进行计算; (2)利用整式的混合计算法则解答即可. 【解答】解:(1)(3x﹣2)(2x+3)﹣(x﹣1)2 =6x2+9x﹣4x﹣6﹣x2+2x﹣1 =5x2+7x﹣7; (2)(6x4﹣8x3)÷(﹣2x2)﹣(3x+2)(1﹣x) =﹣3x2+4x﹣3x+3x2﹣2+2x =3x﹣2. 【点评】本题考查了整式的混合计算,关键是根据多项式乘多项式的法则:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加. 21.分解因式 (1)a4﹣16 (2)3ax2﹣6axy+3ay2. 【考点】提公因式法与公式法的综合运用. 【分析】(1)两次利用平方差公式分解因式即可; (2)先提取公因式3a,再对余下的多项式利用完全平方公式继续分解. 【解答】解:(1)a4﹣16 =(a2+4)(a2﹣4) =(a2+4)(a+2)(a﹣2); (2)3ax2﹣6axy+3ay2 =3a(x2﹣2xy+y2) =3a(x﹣y)2. 【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止. 22.(1)先化简代数式,然后选取一个使原式有意义的a的值代入求值. (2)解方程式:. 【考点】分式的化简求值;解分式方程. 【专题】计算题;分式. 【分析】(1)原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,把a=2代入计算即可求出值; (2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解. 【解答】解:(1)原式=[+]?=?=, 当a=2时,原式=2; (2)去分母得:3x=2x+3x+3, 移项合并得:2x=﹣3, 解得:x=﹣, 经检验x=﹣是分式方程的解. 【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键. 23.在边长为1的小正方形组成的正方形网格中建立如图片所示的平面直角坐标系,已知格点三角形ABC(三角形的三个顶点都在小正方形上) (1)画出△ABC关于直线l:x=﹣1的对称三角形△A1B1C1;并写出A1、B1、C1的坐标. (2)在直线x=﹣l上找一点D,使BD+CD最小,满足条件的D点为(﹣1,1). 提示:直线x=﹣l是过点(﹣1,0)且垂直于x轴的直线. 【考点】作图-轴对称变换;轴对称-最短路线问题. 【分析】(1)分别作出点A、B、C关于直线l:x=﹣1的对称的点,然后顺次连接,并写出A1、B1、C1的坐标; (2)作出点B关于x=﹣1对称的点B1,连接CB1,与x=﹣1的交点即为点D,此时BD+CD最小,写出点D的坐标. 【解答】解:(1)所作图形如图所示: A1(3,1),B1(0,0),C1(1,3); (2)作出点B关于x=﹣1对称的点B1, 连接CB1,与x=﹣1的交点即为点D, 此时BD+CD最小, 点D坐标为(﹣1,1). 故答案为:(﹣1,1). 【点评】本题考查了根据轴对称变换作图,解答本题的关键是根据网格结构作出对应点的位置,并顺次连接. 24.如图,已知:AD平分∠CAE,AD∥BC. (1)求证:△ABC是等腰三角形. (2)当∠CAE等于多少度时△ABC是等边三角形?证明你的结论. 【考点】等腰三角形的判定;等边三角形的判定. 【分析】(1)根据角平分线的定义可得∠EAD=∠CAD,再根据平行线的性质可得∠EAD=∠B,∠CAD=∠C,然后求出∠B=∠C,再根据等角对等边即可得证. (2)根据角平分线的定义可得∠EAD=∠CAD=60°,再根据平行线的性质可得∠EAD=∠B=60°,∠CAD=∠C=60°,然后求出∠B=∠C=60°,即可证得△ABC是等边三角形. 【解答】(1)证明:∵AD平分∠CAE, ∴∠EAD=∠CAD, ∵AD∥BC, ∴∠EAD=∠B,∠CAD=∠C, ∴∠B=∠C, ∴AB=AC. 故△ABC是等腰三角形. (2)解:当∠CAE=120°时△ABC是等边三角形. ∵∠CAE=120°,AD平分∠CAE, ∴∠EAD=∠CAD=60°, ∵AD∥BC, ∴∠EAD=∠B=60°,∠CAD=∠C=60°, ∴∠B=∠C=60°, ∴△ABC是等边三角形. 【点评】本题考查了等腰三角形的判定,角平分线的定义,平行线的性质,比较简单熟记性质是解题的关键. 25.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需要的时间与原计划生产450台机器所需要的时间相同,现在平均每天生产多少台机器? 【考点】分式方程的应用. 【专题】应用题. 【分析】本题考查列分式方程解实际问题的能力,因为现在生产600台机器的时间与原计划生产450台机器的时间相同.所以可得等量关系为:现在生产600台机器时间=原计划生产450台时间. 【解答】解:设:现在平均每天生产x台机器,则原计划可生产(x﹣50)台. 依题意得:. 解得:x=200. 检验:当x=200时,x(x﹣50)≠0. ∴x=200是原分式方程的解. 答:现在平均每天生产200台机器. 【点评】列分式方程解应用题与所有列方程解应用题一样,重点在于准确地找出相等关系,这是列方程的依据.而难点则在于对题目已知条件的分析,也就是审题,一般来说应用题中的条件有两种,一种是显性的,直接在题目中明确给出,而另一种是隐性的,是以题目的隐含条件给出.本题中“现在平均每天比原计划多生产50台机器”就是一个隐含条件,注意挖掘. 26.如图,△ACB和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,点C、D、E三点在同一直线上,连结BD.求证: (1)BD=CE; (2)BD⊥CE. 【考点】全等三角形的判定与性质;等腰直角三角形. 【专题】证明题. 【分析】(1)由条件证明△BAD≌△CAE,就可以得到结论; (2)根据全等三角形的性质得出∠ABD=∠ACE.根据三角形内角和定理求出∠ACE+∠DFC=90°,求出∠FDC=90°即可. 【解答】证明:(1)∵△ACB和△ADE都是等腰直角三角形, ∴AE=AD,AB=AC,∠BAC=∠DAE=90°, ∴∠BAC+∠CAD=∠EAD+∠CAD, 即∠BAD=∠CAE, 在△BAD和△CAE中, , ∴△BAD≌△CAE(SAS), ∴BD=CE; (2)如图, ∵△BAD≌△CAE, ∴∠ABD=∠ACE, ∵∠CAB=90°, ∴∠ABD+∠AFB=90°, ∴∠ACE+∠AFB=90°, ∵∠DFC=∠AFB, ∴∠ACE+∠DFC=90°, ∴∠FDC=90°, ∴BD⊥CE. 【点评】本题考查了全等三角形的判定及性质的运用,垂直的判定及性质的运用,等腰直角三角形的性质的运用,勾股定理的运用,解答时运用全等三角形的性质求解是关键.初二数学试卷及答案解析相关 文章 : ★ 初二数学期末考试试卷分析 ★ 八年级下册数学测试卷及答案解析 ★ 八年级下册数学试卷及答案 ★ 八年级下数学测试卷及答案分析 ★ 八年级数学月考试卷分析 ★ 八年级上册数学考试试卷及参考答案 ★ 八年级上册数学期末考试试卷及答案 ★ 八年级下册期末数学试题附答案 ★ 八年级数学试卷质量分析 ★ 八年级下册数学练习题及答案

宜木构思家具
数学考试失败是伤心的,但是障碍与失败,是通往成功最稳靠的踏脚石,肯研究、利用它们,便能从失败中培养出成功。以下是我为你整理的初二数学上期末考试题,希望对大家有帮助!
一、 选择题(每小题3分,共30分)
1.已知 = ,那么 的值为()
A. B. C. D.
2.下列立体图形中,俯视图是正方形的是()
A. B. C. D.
3.下列性质中,菱形具有而矩形不一定具有的是()
A.对角线相等 B.对角线互相平分
C.对角线互相垂直 D.邻边互相垂直
4.用配方法解一元二次方程x2+4x﹣3=0时,原方程可变形为()
A. B. C. D.
5.若双曲线 过两点(﹣1, ),(﹣3, ),则 与 的大小关系为()
A. > B. <
C. = 与y2大小无法确定
6.函数 是反比例函数,则()
≠0 ≠0且m≠1 或2
7.如图,矩形ABCD的对角线交于点O,若∠ACB=30°,AB=2,则OC的长为()
8.如图所示,在一块长为22m,宽为17m的矩形地面上,要修建同样宽的两条互相垂直的道路(两条道路各与矩形的一条边平行),若剩余部分种上草坪,使草坪的面积为300m ,则所修道路的宽度为( )m。
9.当k>0时,反比例函数y= 和一次函数y=kx+2的图象大致是()
A. B. C. D.
10.如图,在平面直角坐标中,正方形ABCD与正方形BEFG
是以原点O为位似中心的位似图形,且相似比为 ,点A,B,
E在x轴上,若正方形BEFG的边长为6,则C点坐标为()
A.(3,2) B.(3,1) C.(2,2) D.(4,2)
二、填空题(每小题3分,共18分)
11.已知关于x的方程x2﹣3x+m=0的一个根是1,则m= .
12.在菱形ABCD中,对角线AC=6,BD=10,则菱形ABCD的面积为 .
13.如图,在△ABC中,点D,E,F分别在AB,AC,BC上, DE//BC, EF//AB,若 AB=8, BD=3,BF=4,则FC的长为 .
14.一个四边形的各边之比为1:2:3:4,和它相似的另一个四边形的最小边长为5cm,则它的最大边长为 cm.
15.一个布袋内只装有一个红球和2个黄球,这些球除颜色外其余都相同,随机摸出一个球后放回搅匀,再随机摸出一个球,则两次摸出的球都是黄球的概率是 .
16.如图,直线y=﹣x+b与双曲线y=﹣ (x<0)交于点A,
与x轴交于点B,则OA2﹣OB2=.
三、解答题(共52分)
17.(4分)解下列方程:
18.(6分)某种商品的标价为400元/件,经过两次降价后的价格为324元/件,并且两次降价的百分率相同.
(1)求该种商品每次降价的百分率;
(2)若该种商品进价为300元/件,两次降价共售出此种商品100件,为使两次降价销售的总利润不少于3210元.问第一次降价后至少要售出该种商品多少件?
19.(6分) 甲、乙两个不透明的口袋,甲口袋中装有3个分别标有数字1,2,3的小球,乙口袋中装有2个分别标有数字4,5的小球,它们的形状、大小完全相同,现随机从甲口袋中摸出一个小球记下数字,再从乙口袋中摸出一个小球记下数字.
(1)请用列表或树状图的方法(只选其中一种),表示出两次所得数字可能出现的所有结果;
(2)求出两个数字之和能被3整除的概率.
20.(8分)如图,△ABC为锐角三角形,AD是BC边上的高,正方形EFGH的一边FG在BC上,顶点E、H分别在AB、AC上,已知BC=40cm,AD=30cm.
(1)求证:△AEH∽△ABC;
(2)求这个正方形的边长与面积.
21.(8分)如图,花丛中有一路灯杆AB,在灯光下,大华在D点处的影长DE=3米,沿BD方向行走到达G点,DG=5米,这时大华的影长GH=5米.如果大华的身高为2米,求路灯杆AB的高度.
22.(8分)某药品研究所开发一种抗菌新药,经多年动物实验,首次用于临床人体试验,测得成人服药后血液中药物浓度y(微克/毫升)与服药时间x小时之间函数关系如图所示(当4≤x≤10时,y与x成反比例).
(1)根据图象分别求出血液中药物浓度上升和下降阶段y与x之间的函数关系式.
(2)问血液中药物浓度不低于2微克/毫升的持续时间多少小时?
23.( 12分)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,过点B作射线BB1使得BB1∥AC.动点D从点A出发沿射线AC方向以每秒5个单位的速度运动,同时动点E从点C沿射线AC方向以每秒3个单位的速度运动.过点D作DH⊥AB于H,过点E作EF⊥AC交射线BB1于F,G是EF中点,连接DG.设点D运动的时间为t秒.
(1)当t为何值时,AD=AB,并求出此时DE的长度;
(2)当△DEG与△ACB相似时,求t的值.
一.选择题 BBCDB CACCA
二.填空题 11. 2 13. 14. 20 15.
三.解答题
17. 解:
或 即 或 ……………4分
18.解:(1)设该种商品每次降价的百分率为x%,
依题意得:400×(1﹣x%)2=324, 解得:x=10,或x=190(舍去).
答:该种商品每次降价的百分率为10%.……………3分
(2)设第一次降价后售出该种商品m件,则第二次降价后售出该种商品(100﹣m)件,
第一次降价后的单件利润为:400×(1﹣10%)﹣300=60(元/件);
第二次降价后的单件利润为:324﹣300=24(元/件).
依题意得:60m+24×(100﹣m)=36m+2400≥3210,
解得:m≥.∴m≥23.
答:为使两次降价销售的总利润不少于3210元.第一次降价后至少要售出该种商品23件.6分
19.解:(1)树状图如下:
………3分
(2)∵共6种情况,两个数字之和能被3整除的情况数有2种,
∴两个数字之和能被3整除的概率为 ,即P(两个数字之和能被3整除)= .……………6分
20.解:(1)证明:∵四边形EFGH是正方形, ∴EH∥BC,
∴∠AEH=∠B,∠AHE=∠C, ∴△AEH∽△ABC.………3分
(2)解:如图设AD与EH交于点M. ∵∠EFD=∠FEM=∠FDM=90°,
∴四边形EFDM是矩形, ∴EF=DM,设正方形EFGH的边长为x, ∵△AEH∽△ABC,
∴ = , ∴ = , ∴x= ,
∴正方形EFGH的边长为 cm,面积为 分
21.解:∵CD∥AB, ∴△EAB∽△ECD,
∴ = ,即 = ①,……………3分
∵FG∥AB, ∴△HFG∽△HAB, ∴ = ,即 = ②,……………6分
由①②得 = , 解得BD=, ∴ = ,解得:AB=7.
答:路灯杆AB的高度为7m.……………8分
22.解:(1)当0≤x≤4时,设直线解析式为:y=kx, 将(4,8)代入得:8=4k,
解得:k=2, 故直线解析式为:y=2x,……………2分
当4≤x≤10时,设反比例函数解析式为:y= , 将(4,8)代入得:8= ,
解得:a=32, 故反比例函数解析式为:y= ;
因此血液中药物浓度上升阶段的函数关系式为y=2x(0≤x≤4),
下降阶段的函数关系式为y= (4≤x≤10).……………5分
(2)当y=2,则2=2x,解得:x=1, 当y=2,则2= ,解得:x=16,
∵16﹣1=15(小时),∴血液中药物浓度不低于2微克/毫升的持续时间15小时.……………8分
23.解:(1)∵∠ACB=90°,AC=3,BC=4, ∴AB= =5.
∵AD=5t,CE=3t, ∴当AD=AB时,5t=5,即t=1;
∴AE=AC+CE=3+3t=6,DE=6﹣5=1.……………4分
(2)∵EF=BC=4,G是EF的中点, ∴GE=2.
当AD
若△DEG与△ACB相似,则 或 ,
∴ 或 , ∴t= 或t= ;
当AD>AE(即t> )时,DE=AD﹣AE=5t﹣(3+3t)=2t﹣3,
若△DEG与△ACB相似,则 或 , ∴ 或 ,
解得t= 或t= ;
综上所述,当t= 或 或 或 时,△DEG与△ACB相似.……………12分
优质考试培训问答知识库