huangmanjing
读书诱发了人的思绪,使想象超越时空;读书丰富了人的思想,如接触博大智慧的老人;读书拓展了人的精神世界,使人生更加美丽。下面给大家分享一些关于初二数学期中试卷及答案解析,希望对大家有所帮助。 一、选择题(共8小题,每小题3分,满分24分) 的平方根是() .±7C.﹣ 考点:平方根. 专题:存在型. 分析:根据平方根的定义进行解答即可. 解答:解:∵(±7)2=49, ∴49的平方根是±7. 故选B. 点评:本题考查的是平方根的定义,即如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根. 2.(﹣3)2的算术平方根是() .±3C.﹣3D. 考点:算术平方根. 专题:计算题. 分析:由(﹣3)2=9,而9的算术平方根为=3. 解答:解:∵(﹣3)2=9, ∴9的算术平方根为=3. 故选A. 点评:本题考查了算术平方根的定义:一个正数a的正的平方根叫这个数的算术平方根,记作(a>0),规定0的算术平方根为0. 3.在实数﹣,0,﹣π,,中无理数有() 个个个个 考点:无理数. 分析:根据无理数是无限不循环小数,可得答案. 解答:解:π是无理数, 故选:A. 点评:本题考查了无理数,无理数是无限不循环小数,注意带根号的数不一定是无理数. 4.在数轴上表示1、的对应点分别为A、B,点B关于点A的对称点C,则点C表示的实数为() A.﹣﹣﹣D.﹣2 考点:实数与数轴. 分析:首先根据已知条件结合数轴可以求出线段AB的长度,然后根据对称的性质即可求出结果. 解答:解:∵数轴上表示1,的对应点分别为A、B, ∴AB=﹣1, 设B点关于点A的对称点C表示的实数为x, 则有=1, 解可得x=2﹣, 即点C所对应的数为2﹣. 故选C. 点评:此题主要考查了根据数轴利用数形结合的思想求出数轴两点之间的距离,同时也利用了对称的性质. 5.用反证法证明命题:“如图,如果AB∥CD,AB∥EF,那么CD∥EF”,证明的第一个步骤是() A.假定CD∥EFB.已知AB∥EF C.假定CD不平行于EFD.假定AB不平行于EF 考点:反证法. 分析:根据要证CD∥EF,直接假设CD不平行于EF即可得出. 解答:解:∵用反证法证明命题:如果AB∥CD,AB∥EF,那么CD∥EF. ∴证明的第一步应是:从结论反面出发,故假设CD不平行于EF. 故选:C. 点评:此题主要考查了反证法的第一步,根据题意得出命题结论的反例是解决问题的关键. 6.如图,直线l过等腰直角三角形ABC顶点B,A、C两点到直线l的距离分别是2和3,则AB的长是() . 考点:全等三角形的判定与性质;勾股定理;等腰直角三角形. 专题:计算题;压轴题. 分析:由三角形ABC为等腰直角三角形,可得出AB=BC,∠ABC为直角,可得出∠ABD与∠EBC互余,在直角三角形ABD中,由两锐角互余,利用等角的余角相等得到一对角相等,再由一对直角相等,及AB=BC,利用AAS可得出三角形ABD与三角形BEC全等,根据全等三角形的对应边相等可得出BD=CE,由CE=3得出BD=3,在直角三角形ABD中,由AD=2,BD=3,利用勾股定理即可求出AB的长. 解答:解:如图所示: ∵△ABC为等腰直角三角形, ∴AB=BC,∠ABC=90°, ∴∠ABD+∠CBE=90°, 又AD⊥BD,∴∠ADB=90°, ∴∠DAB+∠ABD=90°, ∴∠CBE=∠DAB, 在△ABD和△BCE中, , ∴△ABD≌△BCE, ∴BD=CE,又CE=3, ∴BD=3, 在Rt△ABD中,AD=2,BD=3, 根据勾股定理得:AB==. 故选D 点评:此题考查了全等三角形的判定与性质,等腰直角三角形的性质,以及勾股定理,利用了转化的数学思想,灵活运用全等三角形的判定与性质是解本题的关键. 7.如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是() ,∠B=∠,AC=,∠A=∠DD.∠B=∠E,∠A=∠D 考点:全等三角形的判定. 分析:根据全等三角形的判定 方法 分别进行判定即可. 解答:解:A、已知AB=DE,再加上条件BC=EC,∠B=∠E可利用SAS证明△ABC≌△DEC,故此选项不合题意; B、已知AB=DE,再加上条件BC=EC,AC=DC可利用SSS证明△ABC≌△DEC,故此选项不合题意; C、已知AB=DE,再加上条件BC=DC,∠A=∠D不能证明△ABC≌△DEC,故此选项符合题意; D、已知AB=DE,再加上条件∠B=∠E,∠A=∠D可利用ASA证明△ABC≌△DEC,故此选项不合题意; 故选:C. 点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL. 注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角. 8.如图,一架长25米的梯子,斜立在一竖直的墙上,这时梯子的底部距离墙底端7分米,如果梯子的顶端下滑4分米,那么梯子的底部平滑的距离为() 分米分米分米分米 考点:勾股定理的应用. 分析:在直角三角形AOC中,已知AC,OC的长度,根据勾股定理即可求AO的长度, 解答:解:∵AC=25分米,OC=7分米, ∴AO==24分米, 下滑4分米后得到BO=20分米, 此时,OD==15分米, ∴CD=15﹣7=8分米. 故选D. 点评:本题考查了勾股定理在实际生活中的应用,考查了勾股定理在直角三角形中的正确运用,本题中两次运用勾股定理是解题的关键. 二、填空题(共6小题,每小题3分,满分18分) 9.计算:=﹣2. 考点:立方根. 专题:计算题. 分析:先变形得=,然后根据立方根的概念即可得到答案. 解答:解:==﹣2. 故答案为﹣2. 点评:本题考查了立方根的概念:如果一个数的立方等于a,那么这个数就叫a的立方根,记作. 10.计算:﹣a2b?2ab2=﹣2a3b3. 考点:单项式乘单项式. 分析:根据单项式与单项式相乘,把他们的系数分别相乘,相同字母的幂分别相加,其余字母连同他的指数不变,作为积的因式,计算即可. 解答:解:﹣a2b?2ab2=﹣2a3b3; 故答案为:﹣2a3b3. 点评:本题考查了单项式与单项式相乘,熟练掌握运算法则是解题的关键. 11.计算:(a2)3÷(﹣2a2)2=a2. 考点:整式的除法. 分析:根据幂的乘方和积的乘方进行计算即可. 解答:解:原式=a6÷4a4 =a2, 故答案为a2. 点评:本题考查了整式的除法,熟练掌握幂的乘方和积的乘方是解题的关键. 12.如图是2014~2015学年度七年级(1)班学生参加课外兴趣小组人数的扇形统计图.如果参加外语兴趣小组的人数是12人,那么参加绘画兴趣小组的人数是5人. 考点:扇形统计图. 专题:计算题. 分析:根据参加外语兴趣小组的人数是12人,所占百分比为24%,计算出总人数,再用1减去所有已知百分比,求出绘画的百分比,再乘以总人数即可解答. 解答:解:∵参加外语小组的人数是12人,占参加课外兴趣小组人数的24%, ∴参加课外兴趣小组人数的人数共有:12÷24%=50(人), ∴绘画兴趣小组的人数是50×(1﹣14%﹣36%﹣16%﹣24%)=5(人). 故答案为:5. 点评:本题考查了扇形统计图,从图中找到相关信息是解此类题目的关键. 13.如图,△ABC中,AC的垂直平分线交AC于E,交BC于D,△ABD的周长为12,AE=5,则△ABC的周长为22. 考点:线段垂直平分线的性质. 分析:由AC的垂直平分线交AC于E,交BC于D,根据垂直平分线的性质得到两组线段相等,进行线段的等量代换后结合 其它 已知可得答案. 解答:解:∵DE是AC的垂直平分线, ∴AD=DC,AE=EC=5, △ABD的周长=AB+BD+AD=12, 即AB+BD+DC=12,AB+BC=12 ∴△ABC的周长为AB+BC+AE+EC=12+5+5=22. △ABC的周长为22. 点评:此题主要考查线段的垂直平分线的性质等几何知识;进行线段的等量代换是正确解答本的关键. 14.如图,在△ABC中,∠C=90°,∠CAB=50°.按以下步骤作图:①以点A为圆心,小于AC的长为半径画弧,分别交AB、AC于点E、F;②分别以点E、F为圆心,大于EF的长为半径画弧,两弧相交于点G;③作射线AG交BC边于点D.则∠ADC的度数为65°. 考点:全等三角形的判定与性质;直角三角形的性质;作图—复杂作图. 分析:根据已知条件中的作图步骤知,AG是∠CAB的平分线,根据角平分线的性质解答即可. 解答:解:解法一:连接EF. ∵点E、F是以点A为圆心,小于AC的长为半径画弧,分别与AB、AC的交点, ∴AF=AE; ∴△AEF是等腰三角形; 又∵分别以点E、F为圆心,大于EF的长为半径画弧,两弧相交于点G; ∴AG是线段EF的垂直平分线, ∴AG平分∠CAB, ∵∠CAB=50°, ∴∠CAD=25°; 在△ADC中,∠C=90°,∠CAD=25°, ∴∠ADC=65°(直角三角形中的两个锐角互余); 解法二:根据已知条件中的作图步骤知,AG是∠CAB的平分线,∵∠CAB=50°, ∴∠CAD=25°; 在△ADC中,∠C=90°,∠CAD=25°, ∴∠ADC=65°(直角三角形中的两个锐角互余); 故答案是:65°. 点评:本题综合考查了作图﹣﹣复杂作图,直角三角形的性质.根据作图过程推知AG是∠CAB平分线是解答此题的关键. 三、解答题(共9小题,满分78分) 15.分解因式:3x2y+12xy2+12y3. 考点:提公因式法与公式法的综合运用. 分析:原式提取公因式,再利用完全平方公式分解即可. 解答:解:原式=3y(x2+4xy+4y2) =3y(x+2y)2. 点评:此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键. 16.先化简,再求值3a﹣2a2(3a+4),其中a=﹣2. 考点:单项式乘多项式. 分析:首先根据单项式与多项式相乘的法则去掉括号,然后合并同类项,最后代入已知的数值计算即可. 解答:解:3a﹣2a2(3a+4) =6a3﹣12a2+9a﹣6a3﹣8a2 =﹣20a2+9a, 当a=﹣2时,原式=﹣20×4﹣9×2=﹣98. 点评:本题考查了整式的化简.整式的加减运算实际上就是去括号、合并同类项,这是各地2015年中考的常考点. 17.已知a2﹣b2=15,且a+b=5,求a﹣b的值. 考点:因式分解-运用公式法. 专题:计算题. 分析:已知第一个等式左边利用平方差公式分解,把a+b=5代入求出a﹣b的值即可. 解答:解:由a2﹣b2=(a+b)(a﹣b)=15,a+b=5, 得到a﹣b=3. 点评:此题考查了因式分解﹣运用公式法,熟练掌握平方差公式是解本题的关键. 18.如图,已知:△ABC中,AB=AC,M是BC的中点,D、E分别是AB、AC边上的点,且BD=CE.求证:MD=ME. 考点:全等三角形的判定与性质;等腰三角形的性质. 专题:证明题. 分析:根据等腰三角形的性质可证∠DBM=∠ECM,可证△BDM≌△CEM,可得MD=ME,即可解题. 解答:证明:△ABC中, ∵AB=AC, ∴∠DBM=∠ECM, ∵M是BC的中点, ∴BM=CM, 在△BDM和△CEM中, , ∴△BDM≌△CEM(SAS), ∴MD=ME. 点评:本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质. 19.如图,在等边三角形ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F. (1)求∠F的度数; 若CD=2,求DF的长. 考点:等边三角形的判定与性质;含30度角的直角三角形. 专题:几何图形问题. 分析:(1)根据平行线的性质可得∠EDC=∠B=60°,根据三角形内角和定理即可求解; 易证△EDC是等边三角形,再根据直角三角形的性质即可求解. 解答:解:(1)∵△ABC是等边三角形, ∴∠B=60°, ∵DE∥AB, ∴∠EDC=∠B=60°, ∵EF⊥DE, ∴∠DEF=90°, ∴∠F=90°﹣∠EDC=30°; ∵∠ACB=60°,∠EDC=60°, ∴△EDC是等边三角形. ∴ED=DC=2, ∵∠DEF=90°,∠F=30°, ∴DF=2DE=4. 点评:本题考查了等边三角形的判定与性质,以及直角三角形的性质,30度的锐角所对的直角边等于斜边的一半. 20.如图已知,CE⊥AB,BF⊥AC,BF交CE于点D,且BD=CD. (1)求证:点D在∠BAC的平分线上; 若将条件“BD=CD”与结论“点D在∠BAC的平分线上”互换,成立吗?试说明理由. 考点:全等三角形的判定与性质. 分析:(1)根据AAS推出△DEB≌△DFC,根据全等三角形的性质求出DE=DF,根据角平分线性质得出即可; 根据角平分线性质求出DE=DF,根据ASA推出△DEB≌△DFC,根据全等三角形的性质得出即可. 解答:(1)证明:∵CE⊥AB,BF⊥AC, ∴∠DEB=∠DFC=90°, 在△DEB和△DFC中, , ∴△DEB∽△DFC(AAS), ∴DE=DF, ∵CE⊥AB,BF⊥AC, ∴点D在∠BAC的平分线上; 解:成立, 理由是:∵点D在∠BAC的平分线上,CE⊥AB,BF⊥AC, ∴DE=DF, 在△DEB和△DFC中, , ∴△DEB≌△DFC(ASA), ∴BD=CD. 点评:本题考查了全等三角形的性质和判定,角平分线性质的应用,解此题的关键是推出△DEB≌△DFC,注意:角平分线上的点到角两边的距离相等,反之亦然. 21.设中学生体质健康综合评定成绩为x分,满分为100分,规定:85≤x≤100为A级,75≤x≤85为B级,60≤x≤75为C级,x<60为D级.现随机抽取福海中学部分学生的综合评定成绩,整理绘制成如下两幅不完整的统计图,请根据图中的信息,解答下列问题: (1)在这次调查中,一共抽取了50名学生,α=24%; 补全条形统计图; (3)扇形统计图中C级对应的圆心角为72度; (4)若该校共有2000名学生,请你估计该校D级学生有多少名? 考点:条形统计图;用样本估计总体;扇形统计图. 专题:图表型. 分析:(1)根据B级的人数和所占的百分比求出抽取的总人数,再用A级的人数除以总数即可求出a; 用抽取的总人数减去A、B、D的人数,求出C级的人数,从而补全统计图; (3)用360度乘以C级所占的百分比即可求出扇形统计图中C级对应的圆心角的度数; (4)用D级所占的百分比乘以该校的总人数,即可得出该校D级的学生数. 解答:解:(1)在这次调查中,一共抽取的学生数是:=50(人), a=×100%=24%; 故答案为:50,24; 等级为C的人数是:50﹣12﹣24﹣4=10(人), 补图如下: (3)扇形统计图中C级对应的圆心角为×360°=72°; 故答案为:72; (4)根据题意得:2000×=160(人), 答:该校D级学生有160人. 点评:此题考查了是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小. 22.某号台风的中心位于O地,台风中心以25千米/小时的速度向西北方向移动,在半径为240千米的范围内将受影响、城市A在O地正西方向与O地相距320千米处,试问A市是否会遭受此台风的影响?若受影响,将有多少小时? 考点:二次根式的应用;勾股定理. 分析:A市是否受影响,就要看台风中心与A市距离的最小值,过A点作ON的垂线,垂足为H,AH即为最小值,与半径240千米比较,可判断是否受影响;计算受影响的时间,以A为圆心,240千米为半径画弧交直线OH于M、N,则AM=AN=240千米,从点M到点N为受影响的阶段,根据勾股定理求MH,根据MN=2MH计算路程,利用:时间=路程÷速度,求受影响的时间. 解答:解:如图,OA=320,∠AON=45°, 过A点作ON的垂线,垂足为H,以A为圆心,240为半径画弧交直线OH于M、N, 在Rt△OAH中,AH=OAsin45°=160<240,故A市会受影响, 在Rt△AHM中,MH===80 ∴MN=160,受影响的时间为:160÷25=小时. 答:A市受影响,受影响时间为小时. 点评:本题考查了二次根式在解决实际问题中的运用,根据题意,构造直角三角形,运用勾股定理计算,是解题的关键. 23.感知:如图①,点E在正方形ABCD的边BC上,BF⊥AE于点F,DG⊥AE于点G,可知△ADG≌△BAF.(不要求证明) 拓展:如图②,点B、C分别在∠MAN的边AM、AN上,点E、F在∠MAN内部的射线AD上,∠1、∠2分别是△ABE、△CAF的外角.已知AB=AC,∠1=∠2=∠BAC,求证:△ABE≌△CAF. 应用:如图③,在等腰三角形ABC中,AB=AC,AB>BC.点D在边BC上,CD=2BD,点E、F在线段AD上,∠1=∠2=∠BAC.若△ABC的面积为9,则△ABE与△CDF的面积之和为6. 考点:全等三角形的判定与性质;等腰三角形的性质;正方形的性质. 专题:压轴题. 分析:拓展:利用∠1=∠2=∠BAC,利用三角形外角性质得出∠4=∠ABE,进而利用AAS证明△ABE≌△CAF; 应用:首先根据△ABD与△ADC等高,底边比值为:1:2,得出△ABD与△ADC面积比为:1:2,再证明△ABE≌△CAF,即可得出△ABE与△CDF的面积之和为△ADC的面积得出答案即可. 解答:拓展: 证明:∵∠1=∠2, ∴∠BEA=∠AFC, ∵∠1=∠ABE+∠3,∠3+∠4=∠BAC,∠1=∠BAC, ∴∠BAC=∠ABE+∠3, ∴∠4=∠ABE, ∴, ∴△ABE≌△CAF(AAS). 应用: 解:∵在等腰三角形ABC中,AB=AC,CD=2BD, ∴△ABD与△ADC等高,底边比值为:1:2, ∴△ABD与△ADC面积比为:1:2, ∵△ABC的面积为9, ∴△ABD与△ADC面积分别为:3,6; ∵∠1=∠2, ∴∠BEA=∠AFC, ∵∠1=∠ABE+∠3,∠3+∠4=∠BAC,∠1=∠BAC, ∴∠BAC=∠ABE+∠3, ∴∠4=∠ABE, ∴, ∴△ABE≌△CAF(AAS), ∴△ABE与△CAF面积相等, ∴△ABE与△CDF的面积之和为△ADC的面积, ∴△ABE与△CDF的面积之和为6, 故答案为:6. 点评:此题主要考查了三角形全等的判定与性质以及三角形面积求法,根据已知得出∠4=∠ABE,以及△ABD与△ADC面积比为:1:2是解题关键.初二数学期中试卷及答案解析相关 文章 : ★ 初二数学期末考试试卷分析 ★ 八年级数学月考试卷分析 ★ 初二数学的期中考试总结 ★ 八年级下数学期中测试 ★ 八年级上册数学期末考试试卷及答案 ★ 八年级下册期末数学试题附答案 ★ 八年级下数学期中试题 ★ 八年级下册数学试卷及答案 ★ 八年级上学期期中检测数学试卷 ★ 2017年全优标准卷八年级数学下册答案
芥末生煎
一、选择题(每小题3分,共30分)1、代数式 中,分式有( )A、4个 B、3个 C、2个 D、1个2、对于反比例函灵敏 ,下列说法不正确的是( )A、点(-2,-1)在它的图象上。 B、它的图象在第一、三象限。C、当x>0时,y随x的增大而增大。 D、当x<0时,y随x的增大而减小。3、若分式 的值为0,则x的值是( )A、-3 B、3 C、±3 D、04、以下是分式方程 去分母后的结果,其中正确的是( )A、 B、 C、 D、5、如图,点A是函数 图象上的任意一点,AB⊥x轴于点B,AC⊥y轴于点C,则四边形OBAC的面积为( )A、2 B、4 C、8 D、无法确定6、已知反比例函数 经过点A(x1,y1)、B(x2,y2),如果y1
jason86122
2018-2019学年八年级数学上期中试卷
2018-2019学年河南省南阳市邓州市八年级(上)期中数学试卷
一、选择题(每小题3分,共30分)请将唯一正确答案的序号涂在答题卡.
1.在下列实数中,无理数是()
A.π B. C. D.
2.下列各式正确的是()
A.=±4 B.=±4 C.±=±4 D.=2
3.下列运算正确的是()
A.a12÷a3=a4 B.(a3)4=a12
C.(﹣2a2)3=8a5 D.(a﹣2)2=a2﹣4
4.若(x﹣1)(x2+mx+n)的积中不含x的二次项和一次项,则m,n的值为()
A.m=2,n=1 B.m=﹣2,n=1 C.m=﹣1,n=1 D.m=1,n=1
5.若2x﹣3y+z﹣2=0,则16x÷82y×4z的值为()
A.16 B.﹣16 C.8 D.4
6.现规定一种运算:a※b=ab+a﹣b,其中a,b为实数,则※等于()
A.﹣6 B.﹣2 C.2 D.6
7.多项式①4x2﹣x;②(x﹣1)2﹣4(x﹣1);③1﹣x2;④﹣4x2﹣1+4x,分解因式后,结果中含有相同因式的是()
A.①和② B.③和④ C.①和④ D.②和③
8.如图,△ABC≌△ADE,∠DAC=70°,∠BAE=100°,BC、DE相交于点F,则∠DFB度数是()
A.15° B.20° C.25° D.30°
9.如图,在△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,已知EH=EB=4,AE=6,则CH的长为()
A.1 B.2 C.3 D.4
10.用四个全等的长方形和一个小正方形拼成如图所示的大正方形,已知大正方形的面积是144,小正方形的面积是4,若用a,b分别表示矩形的长和宽(a>b),则下列关系中不正确的是()
A.a+b=12 B.a﹣b=2 C.ab=35 D.a2+b2=84
二、填空题(每小题3分,共15分)
11.的平方根为 .
12.若(a+5)2+=0,则a2018?b2019= .
13.计算:20132﹣2014×2012= .
14.如图,AE⊥AB,且AE=AB,BC⊥CD,且BC=CD,请按照图中所标注的数据计算图中实线所围成的图形的面积S= .
15.观察下列式子:
22﹣1=3;32﹣22=5;42﹣32=7;52﹣42=9…设n为正整数,用含n的等式表示你发现的规律
三、解答题.(共75分)
16.(10分)计算或解答
(1)﹣+|1﹣|﹣(2+)
(2)一个数的算术平方根为2m﹣6,它的平方根为±(2﹣m),求这个数.
17.(8分)分解因式.
(1)4x3y﹣4x2y2+xy3
(2)m3(x﹣2)+m(2﹣x)
18.(10分)(1)计算:[(ab+1)(ab﹣2)﹣(2ab)2+2]÷(﹣ab)
(2)先化简,再求值:(x+2)2+(2x+1)(2x﹣1)﹣4x(x+1),其中x=﹣.
19.(9分)已知,a+b=3,ab=﹣2,求下列各式的值:
(1)(a﹣1)(b﹣1)
(2)a2+b2
(3)a﹣b
20.(7分)如图,已知AB=CD,AE⊥BD,CF⊥BD,垂足分别为E,F,BF=DE,求证:AB∥CD.
21.(10分)(1)化简:(a﹣b)2+(b﹣c)2+(c﹣a)2;
(2)利用(1)题的结论,且a=2015x+2016,b=2015x+2017,c=2015x+2018,求a2+b2+c2﹣ab﹣bc﹣ca的值.
22.(10分)如图,已知△ABC中,∠B=∠C,AB=12厘米,BC=8厘米,点D为AB的中点.如果点P在线段BC上以每秒2厘米的速度由B点向C点运动,同时,点Q在线段CA上以每秒a厘米的速度由C点向A点运B动设运动时间为t(秒)(0≤t≤4).
(1)若点P点Q的运动速度相等经过1秒后,△BPD与△CQP是否全等,请说明理由;
(2)若点P点Q的运动速度不相等,当点Q的速度是多少时,能够使△BPD与△CQP全等?
23.(11分)CD经过∠BCA顶点C的一条直线,CA=CB.E,F分别是直线CD上两点,且∠BEC=∠CFA=∠α.
(1)若直线CD经过∠BCA的内部,且E,F在射线CD上,请解决下面两个问题:
①如图1,若∠BCA=90°,∠α=90°,则BE CF;(填“>”,“<”或“=”);EF,BE,AF三条线段的数量关系是: .
②如图2,若0°<∠BCA<180°,请添加一个关于∠α与∠BCA关系的条件 ,使①中的两个结论仍然成立,并证明两个结论成立.
(2)如图3,若直线CD经过∠BCA的外部,∠α=∠BCA,请提出EF,BE,AF三条线段数量关系的合理猜想并证明.
2018-2019学年河南省南阳市邓州市八年级(上)期中数学试卷
参考答案与试题解析
一、选择题(每小题3分,共30分)请将唯一正确答案的序号涂在答题卡.
1.在下列实数中,无理数是()
A.π B. C. D.
【分析】根据无理数的定义逐个分析.
【解答】解:A、π是无限不循环小数,即为无理数;
B、是无限循环小数,即为有理数;
C、=3,即为有理数;
D、=4,即为有理数.
故选:A.
【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,…(每两个8之间依次多1个0)等形式.
2.下列各式正确的是()
A.=±4 B.=±4 C.±=±4 D.=2
【分析】根据算术平方根,平方根和立方根的定义逐一计算可得.
【解答】解:A.=4,此选项错误;
B.=4,此选项错误;
C.±=±4,此选项正确;
D.≠2,=2,此选项错误;
故选:C.
【点评】本题主要考查平方根与立方根,解题的关键是掌握平方根和算术平方根及立方根的定义.
3.下列运算正确的是()
A.a12÷a3=a4 B.(a3)4=a12
C.(﹣2a2)3=8a5 D.(a﹣2)2=a2﹣4
【分析】根据同底数幂的除法、幂的乘方与积的乘方及完全平方公式逐一计算可得.
【解答】解:A、a12÷a3=a9,此选项错误;
B、(a3)4=a12,此选项正确;
C、(﹣2a2)3=﹣8a6,此选项错误;
D、(a﹣2)2=a2﹣4a+4,此选项错误;
故选:B.
【点评】本题主要考查整式的运算,解题的关键是掌握同底数幂的除法、幂的乘方与积的乘方及完全平方公式.
4.若(x﹣1)(x2+mx+n)的积中不含x的二次项和一次项,则m,n的值为()
A.m=2,n=1 B.m=﹣2,n=1 C.m=﹣1,n=1 D.m=1,n=1
【分析】直接利用多项式乘法运算法则去括号,进而得出关于m,n的等式,进而得出答案.
【解答】解:∵(x﹣1)(x2+mx+n)的积中不含x的二次项和一次项,
∴(x﹣1)(x2+mx+n)
=x3+mx2+nx﹣x2﹣mx﹣n
=x3+(m﹣1)x2﹣(m﹣n)x﹣n,
∴,
解得m=1,n=1,
故选:D.
【点评】此题主要考查了多项式乘以多项式,正确得出含x的二次项和一次项的系数是解题关键.
5.若2x﹣3y+z﹣2=0,则16x÷82y×4z的值为()
A.16 B.﹣16 C.8 D.4
【分析】根据题意求出2x+3y﹣z,根据同底数幂的乘除法法则计算即可.
【解答】解:∵2x﹣3y+z﹣2=0,
∴2x﹣3y+z=2,
则原式=(24)x÷(23)2y×(22)z
=24x÷26y×22z
=22(2x﹣3y+z)
=24
=16,
故选:A.
【点评】本题考查的是同底数幂的除法运算、幂的乘方,掌握同底数幂的除法法则:底数不变,指数相减是解题的关键.
6.现规定一种运算:a※b=ab+a﹣b,其中a,b为实数,则※等于()
A.﹣6 B.﹣2 C.2 D.6
【分析】先计算=4,=﹣2,再依据新定义规定的运算a※b=ab+a﹣b计算可得.
【解答】解:※
=4※(﹣2)
=4×(﹣2)+4﹣(﹣2)
=﹣8+4+2
=﹣2,
故选:B.
【点评】此题考查了实数的混合运算,属于新定义题型,弄清题意的新定义与实数的运算顺序和运算法则是解本题的关键.
7.多项式①4x2﹣x;②(x﹣1)2﹣4(x﹣1);③1﹣x2;④﹣4x2﹣1+4x,分解因式后,结果中含有相同因式的是()
A.①和② B.③和④ C.①和④ D.②和③
【分析】根据提公因式法和完全平方公式把各选项的多项式分解因式,然后再找出结果中含有相同因式的即可.
【解答】解:①4x2﹣x=x(4x﹣1);
②(x﹣1)2﹣4(x﹣1)=(x﹣1)(x﹣1﹣4)=(x﹣1)(x﹣5);
③1﹣x2=(1﹣x)(1+x)=﹣(x﹣1)(x+1);
④﹣4x2﹣1+4x=﹣(4x2﹣4x+1)=﹣(2x﹣1)2,
∴②和③有相同因式为x﹣1,
故选:D.
【点评】本题主要考查提公因式分解因式和利用完全平方公式分解因式,熟练掌握公式结构是求解的关键.
8.如图,△ABC≌△ADE,∠DAC=70°,∠BAE=100°,BC、DE相交于点F,则∠DFB度数是()
A.15° B.20° C.25° D.30°
【分析】先根据全等三角形对应角相等求出∠B=∠D,∠BAC=∠DAE,所以∠BAD=∠CAE,然后求出∠BAD的度数,再根据△ABG和△FDG的内角和都等于180°,所以∠DFB=∠BAD.
【解答】解:∵△ABC≌△ADE,
∴∠B=∠D,∠BAC=∠DAE,
又∠BAD=∠BAC﹣∠CAD,∠CAE=∠DAE﹣∠CAD,
∴∠BAD=∠CAE,
∵∠DAC=70°,∠BAE=100°,
∴∠BAD=(∠BAE﹣∠DAC)=(100°﹣70°)=15°,
在△ABG和△FDG中,∵∠B=∠D,∠AGB=∠FGD,
∴∠DFB=∠BAD=15°.
故选:A.
【点评】本题主要利用全等三角形对应角相等的性质,解题时注意:全等三角形的对应边相等,对应角相等.
9.如图,在△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,已知EH=EB=4,AE=6,则CH的长为()
A.1 B.2 C.3 D.4
【分析】先利用等角的余角相等得到∠BAD=∠BCE,则可根据“AAS”证明△BCE≌△HAE,则CE=AE=6,然后计算CE﹣HE即可.
【解答】解:∵AD⊥BC,CE⊥AB,
∴∠BEC=∠ADB=90°,
∵∠BAD+∠B=90°,∠BCE+∠B=90°,
∴∠BAD=∠BCE,
在△BCE和△HAE中
,
∴△BCE≌△HAE,
∴CE=AE=6,
∴CH=CE﹣HE=6﹣4=2.
故选:B.
【点评】本题考查了全等三角形的判定与性质:全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.
10.用四个全等的长方形和一个小正方形拼成如图所示的大正方形,已知大正方形的面积是144,小正方形的面积是4,若用a,b分别表示矩形的长和宽(a>b),则下列关系中不正确的是()
A.a+b=12 B.a﹣b=2 C.ab=35 D.a2+b2=84
【分析】能够根据大正方形和小正方形的面积分别求得正方形的边长,再根据其边长分别列方程,根据4个矩形的面积和等于两个正方形的面积的差列方程.
【解答】解:A、根据大正方形的面积求得该正方形的边长是12,则a+b=12,故A选项正确;
B、根据小正方形的面积可以求得该正方形的边长是2,则a﹣b=2,故B选项正确;
C、根据4个矩形的面积和等于大正方形的面积减去小正方形的面积,即4ab=144﹣4=140,ab=35,故C选项正确;
D、(a+b)2=a2+b2+2ab=144,所以a2+b2=144﹣2×35=144﹣70=74,故D选项错误.
故选:D.
【点评】此题关键是能够结合图形和图形的面积公式正确分析,运用排除法进行选择.
二、填空题(每小题3分,共15分)
11.的平方根为±3.
【分析】根据平方根的定义即可得出答案.
【解答】解:8l的平方根为±3.
故答案为:±3.
【点评】此题考查了平方根的知识,属于基础题,掌握定义是关键.
12.若(a+5)2+=0,则a2018?b2019=15.
【分析】直接利用偶次方的性质以及二次根式的性质得出a,b的值,进而利用积的乘方运算法则计算得出答案.
【解答】解:∵(a+5)2+=0,
∴a+5=0,5b=1,
故a=﹣5,b=,
则a2018?b2019=(ab)2018×b=1×=.
故答案为:.
【点评】此题主要考查了非负数的性质以及积的乘方运算,正确掌握相关运算法则是解题关键.
13.计算:20132﹣2014×2012=1.
【分析】把2014×2012化成(2013+1)×(2013﹣1),根据平方差公式展开,再合并即可.
【解答】解:原式=20132﹣(2013+1)×(2013﹣1)
=20132﹣20132+12
=1,
故答案为:1.
【点评】本题考查了平方差公式的应用,注意:(a+b)(a﹣b)=a2﹣b2.
14.如图,AE⊥AB,且AE=AB,BC⊥CD,且BC=CD,请按照图中所标注的数据计算图中实线所围成的图形的面积S=50.
【分析】求出∠F=∠AGB=∠EAB=90°,∠FEA=∠BAG,根据AAS证△FEA≌△GAB,推出AG=EF=6,AF=BG=2,同理CG=DH=4,BG=CH=2,求出FH=14,根据阴影部分的'面积=S梯形EFHD﹣S△EFA﹣S△ABC﹣S△DHC和面积公式代入求出即可.
【解答】解:∵AE⊥AB,EF⊥AF,BG⊥AG,
∴∠F=∠AGB=∠EAB=90°,
∴∠FEA+∠EAF=90°,∠EAF+∠BAG=90°,
∴∠FEA=∠BAG,
在△FEA和△GAB中
∵,
∴△FEA≌△GAB(AAS),
∴AG=EF=6,AF=BG=2,
同理CG=DH=4,BG=CH=2,
∴FH=2+6+4+2=14,
∴梯形EFHD的面积是×(EF+DH)×FH=×(6+4)×14=70,
∴阴影部分的面积是S梯形EFHD﹣S△EFA﹣S△ABC﹣S△DHC
=70﹣×6×2﹣×(6+4)×2﹣×4×2
=50.
故答案为50.
【点评】本题考查了三角形的面积,梯形的面积,全等三角形的性质和判定等知识点,关键是把不规则图形的面积转化成规则图形的面积.
15.观察下列式子:
22﹣1=3;32﹣22=5;42﹣32=7;52﹣42=9…设n为正整数,用含n的等式表示你发现的规律(n+1)2﹣n2=2n+1
【分析】根据已知等式得出序数加1与序数的平方差等于序数的2倍与1的和,据此可得.
【解答】解:∵第1个式子为(1+1)2﹣12=2×1+1,
第2个式子为(2+1)2﹣22=2×2+1,
第3个式子为(3+1)2﹣32=2×3+1,
第4个式子为(4+1)2﹣42=2×4+1,
∴第n个式子为(n+1)2﹣n2=2n+1,
故答案为:(n+1)2﹣n2=2n+1.
【点评】本题主要考查数字的变化类,解题的关键是将已知等式与序数联系起来,得出普遍规律.
三、解答题.(共75分)
16.(10分)计算或解答
(1)﹣+|1﹣|﹣(2+)
(2)一个数的算术平方根为2m﹣6,它的平方根为±(2﹣m),求这个数.
【分析】(1)首先利用算术平方根以及立方根和绝对值的性质分别化简得出答案;
(2)利用算术平方根以及平方根的定义得出m的值进而得出答案.
【解答】解:(1)原式=6+3+2﹣1﹣2﹣2
=6;
(2)由题意得:2m﹣6≥0,
∴m≥3,∴m﹣2>0,
因此2m﹣6=﹣(2﹣m),
∴m=4,所以这个数是(2m﹣6)2=4.
【点评】此题主要考查了实数运算,正确把握相关定义是解题关键.
17.(8分)分解因式.
(1)4x3y﹣4x2y2+xy3
(2)m3(x﹣2)+m(2﹣x)
【分析】(1)多项式共3项且有公因式,应先提取公因式,再考虑用完全平方公式分解;
(2)多项式变形为m3(x﹣2)﹣m(x﹣2),先提取公因式,再考虑用平方差公式分解.
【解答】解:(1)原式=xy(4x2﹣4xy+y2)
=xy(2x﹣y)2
(2)原式=m3(x﹣2)﹣m(x﹣2)
=m(x﹣2)(m2﹣1)
=m(x﹣2)(m+1)(m﹣1)
【点评】本题考查了提公因式法与公式法分解因式,一般来说,多项式若有公因式先提取公因式,再考虑运用公式法分解.
18.(10分)(1)计算:[(ab+1)(ab﹣2)﹣(2ab)2+2]÷(﹣ab)
(2)先化简,再求值:(x+2)2+(2x+1)(2x﹣1)﹣4x(x+1),其中x=﹣.
【分析】(1)先算括号内的乘法,再合并同类项,最后算除法即可;
(2)先算乘法,再合并同类项,最后代入求出即可.
【解答】解:(1)原式=(a2b2﹣ab﹣2﹣4a2b2+2)÷(﹣ab)
=(﹣3a2b2﹣ab)÷(﹣ab)
=3ab+1;
(2)解:原式=x2+4x+4+4x2﹣1﹣4x2﹣4x
=x2+3,
当x=﹣2时,原式=(﹣2)2+3=5.
【点评】本题考查了整式的混合运算和求值,能正确根据整式的运算法则进行化简是解此题的关键.
19.(9分)已知,a+b=3,ab=﹣2,求下列各式的值:
(1)(a﹣1)(b﹣1)
(2)a2+b2
(3)a﹣b
【分析】(1)把式子展开,整体代入求出结果;
(2)利用完全平方公式,把a2+b2变形为(a+b)2﹣2ab,整体代入求出结果;
(3)根据已知和(2)的结果,先求出(a﹣b)2的值,再求它的平方根.
【解答】解:(1)原式=ab﹣a﹣b+1
=ab﹣(a+b)+1
=﹣2﹣3+1
=﹣4
(2)原式=(a+b)2﹣2ab
=9+4
=13
(3)∵(a﹣b)2
=a2+b2﹣2ab
=13+4
=17
∴a﹣b=±.
【点评】本题考查了整体代入和完全平方公式的变形.解决本题的关键是利用转化的思想.
20.(7分)如图,已知AB=CD,AE⊥BD,CF⊥BD,垂足分别为E,F,BF=DE,求证:AB∥CD.
【分析】根据全等三角形的判定与性质,可得∠B=∠D,根据平行线的判定,可得答案.
【解答】证明:∵AE⊥BD,CF⊥BD,
∴∠AEB=∠CFD=90°,
∵BF=DE,
∴BF+EF=DE+EF,
∴BE=DF.
在Rt△AEB和Rt△CFD中,
,
∴Rt△AEB≌Rt△CFD(HL),
∴∠B=∠D,
∴AB∥CD.
【点评】本题考查了全等三角形的判定与性质,利用等式的性质得出BE=DF是解题关键,又利用了全等三角形的判定与性质.
21.(10分)(1)化简:(a﹣b)2+(b﹣c)2+(c﹣a)2;
(2)利用(1)题的结论,且a=2015x+2016,b=2015x+2017,c=2015x+2018,求a2+b2+c2﹣ab﹣bc﹣ca的值.
【分析】(1)根据整式的混合运算的法则化简后,代入求值即可;
(2)原式变形后,利用完全平方公式配方后,将已知等式代入计算即可求出值.
【解答】(1)解:原式=a2﹣2ab+b2+b2﹣2bc+c2+c2﹣2ac+c2=2a2+2b2+2c2﹣2ab﹣2ac﹣2bc;
(2)解:原式=(2a2+2b2+2c2﹣2ab﹣2ac﹣2bc)= [(a﹣b)2+(b﹣c)2+(c﹣a)2]
当a=2015x+2016,b=2015x+2017,c=2015x+2018,
∴原式=×[(﹣1)2+(﹣1)2+22]=3.
【点评】此题考查了因式分解的应用,熟练掌握完全平方公式是解本题的关键.
22.(10分)如图,已知△ABC中,∠B=∠C,AB=12厘米,BC=8厘米,点D为AB的中点.如果点P在线段BC上以每秒2厘米的速度由B点向C点运动,同时,点Q在线段CA上以每秒a厘米的速度由C点向A点运B动设运动时间为t(秒)(0≤t≤4).
(1)若点P点Q的运动速度相等经过1秒后,△BPD与△CQP是否全等,请说明理由;
(2)若点P点Q的运动速度不相等,当点Q的速度是多少时,能够使△BPD与△CQP全等?
【分析】(1)依据点P点Q的运动速度相等,经过1秒,运用SAS即可得到△BPD和△CQP全等;
(2)依据BP≠CQ,△BPD≌△CQP,可得BP=CP=4,进而得出t=2,a=3,即可得到当点Q的速度是3厘米/秒时,能够使△BPD与△CQP全等.
【解答】解:(1)△BPD和△CQP全等
理由:∵t=1秒,
∴BP=CQ=2,
∴CP=8﹣BP=6,
∵AB=12,
∴BD=12×=6,
∴BD=CP,
又∠B=∠C,
∴△BPD≌△CQP(SAS);
(2)∵BP≠CQ,△BPD≌△CQP,
∴BP=CP=4,
∴t=2,
∴BD=CQ=at=2a=6,
∴a=3,
∴当点Q的速度是3厘米/秒时,能够使△BPD与△CQP全等.
【点评】本题考查了全等三角形的性质和判定,解一元一次方程的应用,能求出△BPD≌△CQP是解此题的关键,注意:全等三角形的对应边相等,对应角相等.
23.(11分)CD经过∠BCA顶点C的一条直线,CA=CB.E,F分别是直线CD上两点,且∠BEC=∠CFA=∠α.
(1)若直线CD经过∠BCA的内部,且E,F在射线CD上,请解决下面两个问题:
①如图1,若∠BCA=90°,∠α=90°,则BE=CF;(填“>”,“<”或“=”);EF,BE,AF三条线段的数量关系是:EF=|BE﹣AF|.
②如图2,若0°<∠BCA<180°,请添加一个关于∠α与∠BCA关系的条件∠α+∠ACB=180°.,使①中的两个结论仍然成立,并证明两个结论成立.
(2)如图3,若直线CD经过∠BCA的外部,∠α=∠BCA,请提出EF,BE,AF三条线段数量关系的合理猜想并证明.
【分析】(1)①求出∠BEC=∠AFC=90°,∠CBE=∠ACF,根据AAS证△BCE≌△CAF,推出BE=CF,CE=AF即可;
②求出∠BEC=∠AFC,∠CBE=∠ACF,根据AAS证△BCE≌△CAF,推出BE=CF,CE=AF即可;
(2)求出∠BEC=∠AFC,∠CBE=∠ACF,根据AAS证△BCE≌△CAF,推出BE=CF,CE=AF即可.
【解答】解:(1)①如图1中,
E点在F点的左侧,
∵BE⊥CD,AF⊥CD,∠ACB=90°,
∴∠BEC=∠AFC=90°,
∴∠BCE+∠ACF=90°,∠CBE+∠BCE=90°,
∴∠CBE=∠ACF,
在△BCE和△CAF中,
,
∴△BCE≌△CAF(AAS),
∴BE=CF,CE=AF,
∴EF=CF﹣CE=BE﹣AF,
当E在F的右侧时,同理可证EF=AF﹣BE,
∴EF=|BE﹣AF|;
故答案为=,EF=|BE﹣AF|.
②∠α+∠ACB=180°时,①中两个结论仍然成立;
证明:如图2中,
∵∠BEC=∠CFA=∠a,∠α+∠ACB=180°,
∴∠CBE=∠ACF,
在△BCE和△CAF中,
,
∴△BCE≌△CAF(AAS),
∴BE=CF,CE=AF,
∴EF=CF﹣CE=BE﹣AF,
当E在F的右侧时,同理可证EF=AF﹣BE,
∴EF=|BE﹣AF|;
故答案为∠α+∠ACB=180°.
(2)结论:EF=BE+AF.
理由:如图3中,
∵∠BEC=∠CFA=∠a,∠a=∠BCA,
又∵∠EBC+∠BCE+∠BEC=180°,∠BCE+∠ACF+∠ACB=180°,
∴∠EBC+∠BCE=∠BCE+∠ACF,
∴∠EBC=∠ACF,
在△BEC和△CFA中,
,
∴△BEC≌△CFA(AAS),
∴AF=CE,BE=CF,
∵EF=CE+CF,
∴EF=BE+AF.
【点评】本题综合考查三角形综合题、全等三角形的判定和性质等知识,解题的关键是熟练掌握全等三角形的判定和性质,注意这类题目图形发生变化,结论基本不变,证明方法完全类似,属于中考常考题型.
叮叮猫儿要飞
期中数学考试试卷 一、选择题(每题2分,共26分): 1、下列式子中不是代数式的是( ) A.3a+2bB.5+2C.a+b=1D. 2、下面四句话中,正确句子的个数是( ) (1)-5的相反数是5 (2)-5的倒数是 (3)-5与5的绝对值都是5(4)零的相反数、倒数、绝对值都是零 A. 1个B.2个C.3个D.4个 3、下面四个式子中正确的是( ) A.<-5<5B.5<-5<C.-5<5<D.-5<<5 4、在有理数中,下面四句话中正确句子的个数是( ) (1)有最小的正整数(2)没有最大的负整数 (3)有最小的有理数(4)有绝对值最小的数 A.0个B.1个C.2个D.3个 5、下列说法中错误的是() A.绝对值大于1而小于4的整数只有2和3 B.倒数和它本身相等的数只有1和-1 C.相反数与本身相等的数只有0 D.有相反数而无倒数的只有0 6、在-(-2);-1;0;-|-2|中负数的个数有() A.1个B.2个C.3个D.4个 7、a、b是有理数,若ab>0,a+b>0,那么a、b的符号是() A.+,+B.-,-C.+,-D.-,+ 8、如图,数轴上两点所表示的数分别为m、n,则下列各式中成立的是() A.m+n>0B.m+n<0C.m-n>0D.m-n=0 9、已知a+b=0,且a>b,则|a|+|b|的值是() A.0B.a+bC.b-aD.2a 10、下面四个等式中成立的是() A.B.C.D. 11、用四舍五入法把578000保留两个有效数字得到的近似值是() A.57B.58C.D. 12、下列代数式中单项式的个数有() ,0,1-x,2xy,,-100 A.1个B.2个C.3个D.4个 13、下列四个单项式的系数、次数,正确的是() A.系数为1,次数为2 B.系数为,次数为3 C.系数为1,次数为2D.系数为-5,次数为3 二、填空题(1~8题每空2分,9题每空1分,共37分) 1、(-5)+(-6)=_______,(-5)-(-6)=_______;2、(-5)×(-6)=_______,(-5)÷6=_______;3、(-2)2×(-)=_______,=_______;4、(-3)3×=_______,-32÷=_______;5、=_______,1÷2×=_______;6、平方等于64的数有_______,_______的立方等于-64; 7、把345000用科学记数法记作_______; 8、若|x|=3,则x+1=_______; 9、把下列各数填入相应的大括号内: 11,,,-8,,0,1,-1, 正数集合{…} 负数集合{…} 整数集合{…} 分数集合{…} 正整数集合{…} 负整数集合{…} 正分数集合{…} 负分数集合{…} 有理数集合{…} 三、画出数轴,并在数轴上表示出下列各数,并用“<”号把这些数连接起来(7分) ,,0,,-5 四、计算(1~3每题4分,4题6分,共18分) 1、 2、 3、 4、求当a=1,b=-2时,代数式的值。五、多项式是几次几项式?把它先按a的降幂排列,再按b的降幂排列。(5分) 六、如图长方形的长为a,宽为b。以长方形的两个顶点为圆心作圆弧。(7分) (1)用代数式表示图中阴影部分的面积; (2)并计算当a=5,b=3时阴影部分的面积。(精确到) 七、选做题:(每题10分,共20分) 1、若(a+2)2+|b-a|=0,求代数式a3-3a2b+3ab2-b3的值。 2、当x=-2时,代数式x3-ax-3的值是3,求当x=-3时,代数式x3-ax-3的值。 期中数学考试试卷答案 一、1、C 2、C 3、D 4、C 5、A 6、B 7、A 8、A 9、D 10、C 11、D 12、D 13、D 二、1、-11,+12、30,3、-2,-84、-1,-815、-2,6、±8,-47、×1058、4或-2 9、正数集合{11,,,1,…}负数集合{,-8,-1,,…} 整数集合{11,-8,0,1,-1,…}分数集合{,,,…} 正整数集合{11,1,…}负整数集合{-8,-1,…} 正分数集合{,,…}负分数集合{,,…} 有理数集合{11,,,-8,,0,1,-1,…} 三、画正确数轴3分,在数轴上表示数2分,按“<”号排列2分。 图略。-5<-<0<<。四、1、解:原式 2、解:原式 3、解:原式=1-×(3×-1)+÷(-)……1分 =1-×(-1)-×8……1分 =1-×-2=1--2=-1……2分 4、解:当a=1,b=-2时,……1分 =(12-)〔(-2)2-〕……2分 =(1+)(4-1)=×3……2分 =……1分 五、答:多项式是4次5项式……1分 按a的降幂排列……2分, 再按b的降幂排列……2分。 六、解:(1)……2分 (2)当a=5,b=3时, ……1分 =……2分 =……1分答:阴影部分的面积是。……1分 七、1、解:a=-2,b=-2,代数式的值为零。 2、解:a=7, 代数式的值为-9。