• 回答数

    7

  • 浏览数

    250

可爱滴娃
首页 > 考试培训 > 江苏省数学中考试卷

7个回答 默认排序
  • 默认排序
  • 按时间排序

蓝梦与信

已采纳

一、选择题1.D2.B3.D4.C5.C6.B7.B8.C二、填空题9.-110. >311.512.10 π13.x<-214.(4,0);(4,4);(0,4)(只要写出一个即可)15.3分之1 16.4或617. 18.75° (1)原式= = = .(2)原式= = = = = = .20.⑴、⑵题作图如下:由作图可知线段EF与线段BD的关系为:互相垂直平分. 21.根据题意列表(或画树状图)如下:由列表可知: , .所以这个方法是公平的.22.【答案】⑴在矩形ABCD中,AC‖DE,∴∠DCA=∠CAB,∵∠EDC=∠CAB,∴∠DCA=∠EDC,∴AC‖DE;⑵四边形BCEF是平行四边形.理由:由∠DEC=90°,BF⊥AC,可得∠AFB=∠DEC=90°,又∠EDC=∠CAB,AB=CD,∴△DEC△AFB≌,∴DE=AF,由⑴得AC‖DE,∴四边形AFED是平行四边形,∴AD‖EF且AD=EF,∵在矩形ABCD中,AD‖BC且AD=BC,∴EF‖BC且EF=BC,∴四边形BCEF是平行四边形.22.证明:(1)∵四边形ABCD是矩形,∴CD‖AB ∴∠DCA=∠CAB 又∵∠EDC=∠CAB ∴∠EDC=∠DCA ∴AC‖DE.(2)四边形BCEF是平行四边形证明:∵∠DEC=90° ,BF⊥AC∴在Rt△DEC与Rt△AFC中∠DEC=∠AFB,∠EDC=∠FAB,CD=AB∴Rt△DEC≌ Rt△AFC∴CE=BF又∵DE‖AC ∴∠DEC +∠ACE=180° 又∵∠DEC=90°∴∠ACE=90°∴∠ACE=∠AFB∴CE‖BF∴四边形BCEF是平行四边形.23.解:设调进绿豆x吨,根据题意,得 解得 600≤x≤800.答:调进绿豆的吨数应不少于600,不超过800吨.24.(1)1―33%―33%―13%―17%=4%,故应填4%(2)因为中华慈善总会和中国红十字会共接收捐赠约合人民币亿元,而这两家机构点捐赠的百分比为(13%+17%)=30%,所以全国接收的捐款数和捐物折款数为:=52亿,应填52亿.(3)补全图如下: (4)设直接捐款数为x,则捐赠物折款数为:(52-x)依题意得:x=6(52-x)+3解得x=45(亿)(52-x)=52-45=7(亿)答:直接捐款数和捐赠物折款数分别为45亿,7亿元.25.解:过点A作AD⊥BC于点D,在Rt△ADC中,由 得tanC= ∴∠C=30°∴AD= AC= ×240=120(米)在Rt△ABD中,∠B=45°∴AB= AD=120 (米)120 ÷(240÷24)=120 ÷10=12 (米/分钟)答:李强以12 米/分钟的速度攀登才能和庞亮同时到达山顶A.26.(1)①当1≤ ≤5时,设 ,把(1,200)代入,得 ,即 ;②当 时, ,所以当 >5时, ;(2)当y=200时,20x-60=200,x=13,所以治污改造工程顺利完工后经过13-5=8个月后,该厂利润达到200万元;(3)对于 ,当y=100时,x=2;对于y=20x-60,当y=100时,x=8,所以资金紧张的时间为8-2=6个月.27.解:(1) ∵抛物线经过点D( )∴ ∴c=6.(2)过点D、B点分别作AC的垂线,垂足分别为E、F,设AC与BD交点为M, ∵AC 分四边形ABCD相等,即:S△ABC=S△ADC ∴DE=BF 又∵∠DME=∠BMF, ∠DEM=∠BFE∴△DEM≌△BFM∴DM=BM 即AC平分BD ∵c=6. ∵抛物线为 ∴A( )、B( )∵M是BD的中点 ∴M( )设AC的解析式为y=kx+b,经过A、M点 解得 直线AC的解析式为 .(3)存在.设抛物线顶点为N(0,6),在Rt△AQN中,易得AN= ,于是以A点为圆心,AB= 为半径作圆与抛物线在x上方一定有交点Q,连接AQ,再作∠QAB平分线AP交抛物线于P,连接BP、PQ,此时由“边角边”易得△AQP≌△ABP.28.解:⑴①根据题意得:B的坐标为(0,b),∴OA=OB=b,∴A的坐标为(b,0),代入y=kx+b得k=-1.②过P作x轴的垂线,垂足为F,连结OD.∵PC、PD是⊙O的两条切线,∠CPD=90°,∴∠OPD=∠OPC= ∠CPD=45°,∵∠PDO=90°,,∠POD=∠OPD=45°,∴OD=PD= ,OP= .∵P在直线y=-x+4上,设P(m,-m+4),则OF=m,PF=-m+4,∵∠PFO=90°, OF2+PF2=PO2,∴ m2+ (-m+4)2=( )2,解得m=1或3,∴P的坐标为(1,3)或(3,1) (2)分两种情形,y=- x+ ,或y=- x- 。直线 将圆周分成两段弧长之比为1∶2,可知其所对圆心角为120°,如图,画出弦心距OC,可得弦心距OC= ,又∵直线 中 ∴直线与x轴交角的正切值为 ,即 ,∴AC= ,进而可得AO= ,即直线与与x轴交于点( ,0).所以直线与y轴交于点( ,0),所以b的值为 .当直线与x轴、y轴的负半轴相交,同理可求得b的值为 .综合以上得:b的值为 或 .

江苏省数学中考试卷

209 评论(15)

嘟嘟200907

我找的也没答案呀

269 评论(9)

清风百荷

祝您一生平安,财源滚滚

99 评论(10)

Emily147303

秘密★启用前连云港市2011年高中段学校招生统一文化考试数 学 试 题(请考生在答题卡上作答)注意事项:1.考试时间为120分钟.本试卷共6页,28题.全卷满分150分.2.请在答题卡上规定区域内作答,在其他位置作答一律无效.3.答题前,请考生务必将自己的姓名、准考证号和座位号用毫米黑色墨水签字笔填写在答题卡及试题指定位置,并认真核对条形码上的姓名及考试号.4.选择题答案必须用2B铅笔填涂在答题卡的相应位置上,如需改动,用橡皮擦干净后再重新填涂.参考公式:抛物线y=ax2+bx+c ( a≠0 )的顶点坐标为(—b2a ,4ac—b24a ).一、选择题(本大题共有8个小题,每小题3分,共24分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选择项前的字母代号填涂在答题卡相应位置上)1.2的相反数是A.2 B.-2 C.2 D.12 2.a2•a3等于A.a5 B.a6 C.a8 D.a93.计算 (x+2) 2的结果为x2+□x+4,则“□”中的数为A.-2 B.2 C.-4 D.44.关于反比例函数y=4x图家象,下列说法正确的是A.必经过点(1,1) B.两个分支分布在第二、四象限 C.两个分支关于x轴成轴对称 D.两个分支关于原点成中心对称5.小华在电话中问小明:“已知一个三角形三边长分别是4,9,12,如何求这个三角形的面积?”小明提示说:“可通过作最长边上的高来求解.”小华根据小明的提示作出的图形正确的是6.已知抛一枚均匀硬币正面朝上的概率为12 ,下列说法错误的是A.连续抛一均匀硬币2次必有1次正面朝上B.连续抛一均匀硬币10次都可能正面朝上C.大量反复抛一均匀硬币,平均100次出现正面朝上50次D.通过抛一均匀硬币确定谁先发球的比赛规则是公平的7.如图,在正五边形ABCDE中,对角线AD,AC与EB分别相交于点M,N.下列结论错误的是A.四边形EDCN是菱形 B.四边形MNCD是等腰梯形C.△AEM与△CBN相似 D.△AEN与△EDM全等8.如图,是由8相同的小立方块搭成的几何体的左视图,它的三个视图是2×2的正方形.若拿掉若干个小立方块后(几何体不倒掉),其三个仍都为2×2的正方形,则最多能小立方块的个数为A.1 B.2 C.3 D.4二、填空题(本大题共8小题,每小题3分,共24分.不要写出解答过程,请把答案直接填写在答题卡相应位置上)9.写出一个比-1小的数是_ ▲ .10.在日本核电站事故期间,我国某监测点监测到极微量的人工放射性核素碘-131,其浓度为 0963贝克/立方米.数据“ 0963”用科学记数法可表示为_ ▲ .11.分解因式:x2-9=_ ▲ .12.某品牌专卖店对上个月销售的男运动鞋尺码统计如下:这组统计数据中的从数是_ ▲ 码.13.如图,是一个数值转换机.若输入数3,则输出数是_ ▲ .14.△ABC的顶点都在方格纸的格点上,则sinA=_ ▲ .15.如图,点D为AC上一点,点O为边AB上一点,AD=DO.以O为圆心,OD长为半径作圆,交AC于另一点E,交AB于点F,G,连接EF.若∠BAC=22°,则∠EFG=_ ▲ .16.一等腰梯形两组对边中点连线段的平方和为8,则这个等腰梯形的对角长为_ ▲ .三、解答题(本大题共有12个小题,共102分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(本题满分6分)计算:(1)2×(-5)+22-3÷12 .18.(本题满分6分)解方程:3x = 2x-1 .19.(本题满分6分)解不等式组:2x+3<9-x,2x-5>3x.20.(本题满分6分)两块完全相同的三角形纸板ABC和DEF,按如图所示的方式叠放,阴影部分为重叠部分,点O为边AC和DF的交点,不重叠的两部分△AOF与△DOC是否全等?为什么?21.(本题满分6分)根据我省“十二五”铁路规划,连云港至徐州客运专线项目建成后,连云港至徐州的最短客运时间将由现在的2小时18分缩短为36分钟,其速度每小时将提高260km.求提速后的火车速度.(精确到1km/h)21.(本题满分8分)为了解某校“振兴阅读工程”的开展情况,教育部门对该校初中生的阅读情况进行了随机问卷调查,绘制了如下图表:初中生喜爱的文学作品种类调查统计表根据上述图表提供的信息,解答下列问题:(1)喜爱小说的人数占被调查人数的百分比是多少?初中生每天阅读时间的中位数在哪个时间段内?(2)将写读后感、笔记积累、画圈点读等三种方式称为有记忆阅读.请估计该校现有的2000名初中生中,能进行有记忆阅读的人数约是多少?23.(本题满分8分)一枚棋子放在边长为1个单位长度的正六边形ABCDEF的顶点A处,通过摸球来确定该棋子的走法,其规则是:在一只不透明的袋子中,装有3个标号分别为1、2、3的相同小球,搅匀后从中任意摸出1个,记下标号后放回袋中并搅匀,再从中任意摸出1个,摸出的两个小球标号之和是几棋子就沿边按顺时针方向走几个单位长度.棋子走到哪一点的可能性最大?求出棋子走到该点的概率.(用列表或画树状图的方法求解)24.(本题满分10分)如图,自来水厂A和村庄B在小河l的两侧,现要在A,B间铺设一知输水管道.为了搞好工程预算,需测算出A,B间的距离.一小船在点P处测得A在正北方向,B位于南偏东°方向,前行1200m,到达点Q处,测得A位于北偏东49°方向,B位于南偏西41°方向.(1)线段BQ与PQ是否相等?请说明理由;(2)求A,B间的距离.(参考数据cos41°=)25.(本题满分10分)如图,抛物线y=12 x2-x+a与x轴交于点A,B,与y轴交于点C,其顶点在直线y=-2x上.(1)求a的值;(2)求A,B的坐标;(3)以AC,CB为一组邻边作□ABCD,则点D关于轴的对称点D′ 是否在该抛物线上?请说明理由.26.(本题满分12分)已知∠AOB=60°,半径为3cm的⊙P沿边OA从右向左平行移动,与边OA相切的切点记为点C.(1)⊙P移动到与边OB相切时(如图),切点为D,求劣弧CD⌒ 的长;(2)⊙P移动到与边OB相交于点E,F,若EF=42cm,求OC的长;27.(本题满分12分)因长期干旱,甲水库蓄水量降到了正常水位的最低值.为灌溉需要,由乙水库向甲水库匀速供水,20h后,甲水库打开一个排灌闸为农田匀速灌溉,又经过20h,甲水库打开另一个排灌闸同时灌溉,再经过40h,乙水库停止供水.甲水库每个排泄闸的灌溉速度相同,图中的折线表示甲水库蓄水量Q (万m3) 与时间t (h) 之间的函数关系.求:(1)线段BC的函数表达式;(2)乙水库供水速度和甲水库一个排灌闸的灌溉速度;(3)乙水库停止供水后,经过多长时间甲水库蓄水量又降到了正常水位的最低值?28.(本题满分12分)某课题研究小组就图形面积问题进行专题研究,他们发现如下结论:(1)有一条边对应相等的两个三角形面积之比等于这条边上的对应高之比;(2)有一个角对应相等的两个三角形面积之比等于夹这个角的两边乘积之比;…现请你继续对下面问题进行探究,探究过程可直接应用上述结论.(S表示面积)问题1:如图1,现有一块三角形纸板ABC,P1,P2三等分边AB,R1,R2三等分边AC.经探究知 =13 S△ADE,请证明.问题2:若有另一块三角形纸板,可将其与问题1中的拼合成四边形ABCD,如图2,Q1,Q2三等分边DC.请探究 与S四边形ABCD之间的数量关系.问题3:如图3,P1,P2,P3,P4五等分边AB,Q1,Q2,Q3,Q4五等分边DC.若S四边形ABCD=1,求 .问题4:如图4,P1,P2,P3四等分边AB,Q1,Q2,Q3四等分边DC,P1Q1,P2Q2,P3Q3将四边形ABCD分成四个部分,面积分别为S1,S2,S3,S4.请直接写出含有S1,S2,S3,S4的一个等式.

142 评论(15)

cafa晓晓

在百度文库里寻找电子版

191 评论(9)

周一小姐

南京市2011年初中毕业生学业考试数 学数学注意事项:1. 本试卷共6页,全卷满分120分,考试时间为120分钟,考生答题全部答在答题卡上,答在本试卷上无效.2. 请认真核对监考教师在答题卡上所有粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用毫米的黑色墨水签字笔填写在答题卡及本试卷上.3. 答选择题必须用2B铅笔将答题卡上对应的答案标号涂黑.如需要改动,请用橡皮擦干净后,再选涂其他答案,答非选择题必须毫米黑色墨水签字笔写在答题卡上指定位置,在其他位置答题一律无效.4. 作图必须用2B铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共12分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确的选项的字母代号填涂在答题卡相应位置上)1.的值等于A.3 B.-3 C.±3 D. 2.下列运算正确的是A.a2+a3=a5 B.a2•a3=a6 C.a3÷a2=a D.(a2)3=a8 3.在第六次全国人口普查中,南京市常住人口约为800万人,其中65岁及以上人口占.则该市65岁及以上人口用科学记数法表示约为A.×106人 B.×104人 C.×105人 D.×106 人4.为了解某初中学校学生的视力情况,需要抽取部分学生进行调查,下列抽取学生的方法最合适的是A.随机抽取该校一个班级的学生 B.随机抽取该校一个年级的学生 C.随机抽取该校一部分男生 D.分别从该校初一、初二、初三年级中各班随机抽取10%的学生 5.如图是一个三棱柱,下列图形中,能通过折叠围成一个三棱柱的是6.如图,在平面直角坐标系中,⊙P的圆心是(2,a)(a>2),半径为2,函数y=x的图象被⊙P的弦AB的长为,则a的值是A. B. C. D. 二、填空题(本大题共10小题,每小题2分,共20分,不需要写出解答过程,请把答案直接填写在答题卡相应位置上)7.-2的相反数是________.8.如图,过正五边形ABCDE的顶点A作直线l∥CD,则∠1=____________.9.计算=_______________.10.等腰梯形的腰长为5㎝,它的周长是22㎝,则它的中位线长为___________㎝.11.如图,以O为圆心,任意长为半径画弧,与射线OM交于点A,再以A为圆心,AO长为半径画弧,两弧交于点B,画射线OB,则cos∠AOB的值等于___________.12.如图,菱形ABCD的连长是2㎝,E是AB中点,且DE⊥AB,则菱形ABCD的面积为_________㎝2.13.如图,海边有两座灯塔A、B,暗礁分布在经过A、B两点的弓形(弓形的弧是⊙O的一部分)区域内,∠AOB=80°,为了避免触礁,轮船P与A、B的张角∠APB的最大值为______°.14.如图,E、F分别是正方形ABCD的边BC、CD上的点,BE=CF,连接AE、BF,将△ABE绕正方形的中心按逆时针方向转到△BCF,旋转角为a(0°<a<180°),则∠a=______.15.设函数与的图象的交战坐标为(a,b),则的值为__________.16.甲、乙、丙、丁四位同学围成一圈依序循环报数,规定:①甲、乙、丙、丁首次报出的数依次为1、2、3、4,接着甲报5、乙报6……按此规律,后一位同学报出的数比前一位同学报出的数大1,当报到的数是50时,报数结束;②若报出的数为3的倍数,则报该数的同学需拍手一次,在此过程中,甲同学需要拍手的次数为____________.三、解答题(本大题共12小题,共88分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(6分)解不等式组,并写出不等式组的整数解.18.(6分)计算19.(6分)解方程x2-4x+1=020.(7分)某校部分男生分3组进行引体向上训练,对训练前后的成绩进行统计分析,相应数据的统计图如下.⑴求训练后第一组平均成绩比训练前增长的百分数;⑵小明在分析了图表后,声称他发现了一个错误:“训练后第二组男生引体向上个数没有变化的人数占该组人数的50%,所以第二组的平均数不可能提高3个这么多.”你同意小明的观点吗?请说明理由;⑶你认为哪一组的训练效果最好?请提出一个解释来支持你的观点.21.(7分)如图,将□ABCD的边DC延长到点E,使CE=DC,连接AE,交BC于点F.⑴求证:△ABF≌△ECF⑵若∠AFC=2∠D,连接AC、BE.求证:四边形ABEC是矩形.22.(7分)小颖和小亮上山游玩,小颖乘会缆车,小亮步行,两人相约在山顶的缆车终点会合.已知小亮行走到缆车终点的路程是缆车到山顶的线路长的2倍,小颖在小亮出发后50 min才乘上缆车,缆车的平均速度为180 m/min.设小亮出发x min后行走的路程为y m.图中的折线表示小亮在整个行走过程中y与x的函数关系.⑴小亮行走的总路程是____________㎝,他途中休息了________min.⑵①当50≤x≤80时,求y与x的函数关系式;②当小颖到达缆车终点为时,小亮离缆车终点的路程是多少?23.(7分)从3名男生和2名女生中随机抽取2014年南京青奥会志愿者.求下列事件的概率:⑴抽取1名,恰好是女生;⑵抽取2名,恰好是1名男生和1名女生.24.(7分)已知函数y=mx2-6x+1(m是常数).⑴求证:不论m为何值,该函数的图象都经过y轴上的一个定点;⑵若该函数的图象与x轴只有一个交点,求m的值.25.(7分)如图,某数学课外活动小组测量电视塔AB的高度,他们借助一个高度为30m的建筑物CD进行测量,在点C处塔顶B的仰角为45°,在点E处测得B的仰角为37°(B、D、E三点在一条直线上).求电视塔的高度h.(参考数据:sin37°≈,cos37°≈,tan37°≈)26.(8分)如图,在Rt△ABC中,∠ACB=90°,AC=6㎝,BC=8㎝,P为BC的中点.动点Q从点P出发,沿射线PC方向以2㎝/s的速度运动,以P为圆心,PQ长为半径作圆.设点Q运动的时间为t s.⑴当t=时,判断直线AB与⊙P的位置关系,并说明理由;⑵已知⊙O为△ABC的外接圆,若⊙P与⊙O相切,求t的值.27.(9分)如图①,P为△ABC内一点,连接PA、PB、PC,在△PAB、△PBC和△PAC中,如果存在一个三角形与△ABC相似,那么就称P为△ABC的自相似点.⑴如图②,已知Rt△ABC中,∠ACB=90°,∠ACB>∠A,CD是AB上的中线,过点B作BE⊥CD,垂足为E,试说明E是△ABC的自相似点.⑵在△ABC中,∠A<∠B<∠C.①如图③,利用尺规作出△ABC的自相似点P(写出作法并保留作图痕迹);②若△ABC的内心P是该三角形的自相似点,求该三角形三个内角的度数.28.(11分)问题情境已知矩形的面积为a(a为常数,a>0),当该矩形的长为多少时,它的周长最小?最小值是多少?数学模型设该矩形的长为x,周长为y,则y与x的函数关系式为.探索研究⑴我们可以借鉴以前研究函数的经验,先探索函数的图象性质.① 填写下表,画出函数的图象:② x ……1 2 3 4 ……y …………②观察图象,写出该函数两条不同类型的性质;③在求二次函数y=ax2+bx+c(a≠0)的最大(小)值时,除了通过观察图象,还可以通过配方得到.请你通过配方求函数(x>0)的最小值.解决问题⑵用上述方法解决“问题情境”中的问题,直接写出答案.答案:一.选择题:ACCDBB二.填空:7. 2 8. 36 9. 10. 6 11. 12. 13. 40 14. 90 15. 16. 4 17.解: 解不等式①得:解不等式②得:所以,不等式组的解集是.不等式组的整数解是,0,1..解法一:移项,得.配方,得, 由此可得,解法二:,,.20.解:⑴训练后第一组平均成绩比训练前增长的百分数是≈67%.⑵不同意小明的观点,因为第二组的平均成绩增加8×10%+6×20%+5×20%+0×50%=3(个).(3)本题答案不唯一,我认为第一组训练效果最好,因为训练后第一组平均成绩比训练前增长的百分数最大.21.证明:⑴∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∴∠ABF=∠ECF.∵EC=DC, ∴AB=EC.在△ABF和△ECF中,∵∠ABF=∠ECF,∠AFB=∠EFC,AB=EC,∴⊿ABF≌⊿ECF.(2)解法一:∵AB=EC ,AB∥EC,∴四边形ABEC是平行四边形.∴AF=EF, BF=CF.∵四边形ABCD是平行四边形,∴∠ABC=∠D,又∵∠AFC=2∠D,∴∠AFC=2∠ABC.∵∠AFC=∠ABF+∠BAF,∴∠ABF=∠BAF.∴FA=FB.∴FA=FE=FB=FC, ∴AE=BC.∴口ABEC是矩形.解法二:∵AB=EC ,AB∥EC,∴四边形ABEC是平行四边形.∵四边形ABCD是平行四边形,∴AD∥BC,∴∠D=∠BCE.又∵∠AFC=2∠D,∴∠AFC=2∠BCE,∵∠AFC=∠FCE+∠FEC,∴∠FCE=∠FEC.∴∠D=∠FEC.∴AE=AD.又∵CE=DC,∴AC⊥DE.即∠ACE=90°.∴口ABEC是矩形.22. 解⑴3600,20.⑵①当时,设y与x的函数关系式为.根据题意,当时,;当,. 所以,与的函数关系式为.②缆车到山顶的路线长为3600÷2=1800(),缆车到达终点所需时间为1800÷180=10().小颖到达缆车终点时,小亮行走的时间为10+50=60().把代入,得y=55×60—800=2500.所以,当小颖到达缆车终点时,小亮离缆车终点的路程是3600-2500=1100().23.解⑴抽取1名,恰好是女生的概率是.⑵分别用男1、男2、男3、女1、女2表示这五位同学,从中任意抽取2名,所有可能出现的结果有:(男1,男2),(男1,男3),(男1,女1),(男1,女2),(男2,男3),(男2,女1),(男2,女2),(男3,女1),(男3,女2),(女1,女2),共10种,它们出现的可能性相同,所有结果中,满足抽取2名,恰好是1名男生和1名女生(记为事件A)的结果共6种,所以P(A)=.24.解:⑴当x=0时,.所以不论为何值,函数的图象经过轴上的一个定点(0,1).⑵①当时,函数的图象与轴只有一个交点;②当时,若函数的图象与轴只有一个交点,则方程有两个相等的实数根,所以,.综上,若函数的图象与轴只有一个交点,则的值为0或9.25.在中,=.∴EC=≈().在中,∠BCA=45°,∴在中,=.∴.∴().答:电视塔高度约为120.26.解⑴直线与⊙P相切.如图,过点P作PD⊥AB, 垂足为D.在Rt△ABC中,∠ACB=90°,∵AC=150px,BC=200px,∴.∵P为BC的中点,∴PB=100px.∵∠PDB=∠ACB=90°,∠PBD=∠ABC.∴△PBD∽△ABC.∴,即,∴PD =(cm).当时,(cm) ∴,即圆心到直线的距离等于⊙P的半径.∴直线与⊙P相切.⑵ ∠ACB=90°,∴AB为△ABC的外切圆的直径.∴.连接OP.∵P为BC的中点,∴.∵点P在⊙O内部,∴⊙P与⊙O只能内切.∴或,∴=1或4. ∴⊙P与⊙O相切时,t的值为1或4.27. 解⑴在Rt △ABC中,∠ACB=90°,CD是AB上的中线,∴,∴CD=BD.∴∠BCE=∠ABC.∵BE⊥CD,∴∠BEC=90°,∴∠BEC=∠ACB.∴△BCE∽△ABC.∴E是△ABC的自相似点.⑵①作图略.作法如下:(i)在∠ABC内,作∠CBD=∠A;(ii)在∠ACB内,作∠BCE=∠ABC;BD交CE于点P.则P为△ABC的自相似点.②连接PB、PC.∵P为△ABC的内心,∴,.∵P为△ABC的自相似点,∴△BCP∽△ABC.∴∠PBC=∠A,∠BCP=∠ABC=2∠PBC =2∠A,∠ACB=2∠BCP=4∠A.∵∠A+∠ABC+∠ACB=180°.∴∠A+2∠A+4∠A=180°.∴.∴该三角形三个内角的度数分别为、、.28. 解⑴①,,,2,,,.函数的图象如图.②本题答案不唯一,下列解法供参考.当时,随增大而减小;当时,随增大而增大;当时函数的最小值为2.③===当=0,即时,函数的最小值为2.⑵当该矩形的长为时,它的周长最小,最小值为.2012年江苏省南京市中考数学试题 一、选择题(本大题共6小题,每小题2分,共12分)1、下列四个数中,负数是A. B. C. 、PM 是指大气中直径小于或等于 m的颗粒物,将用科学记数法表示为A. B. C. 、计算的结果是A. B. C. 、12的负的平方根介于A. -5和-4之间 B. -4与-3之间 C.-3与-2之间 D. -2与-1之间5、若反比例函数与一次函数的图像没有交点,则的值可以是A. -2 B. -1 C. 1 D. 26、如图,菱形纸片ABCD中,,将纸片折叠,点A、D分别落在A’、D’处,且A’D’经过B,EF为折痕,当D’FCD时,的值为A. B. C. D.二、填空题(本大题共10小题,每小题2分,共20分)7、使有意义的的取值范围是 8、计算的结果是 9、方程的解是 10、如图,、、、是五边形ABCDE的4个外角,若,则 11、已知一次函数的图像经过点(2,3),则的值为 12、已知下列函数 ① ② ③,其中,图象通过平移可以得到函数的图像的有 (填写所有正确选项的序号)13、某公司全体员工年薪的具体情况如下表:年薪/万元 30 14 9 6 4 3员工数/人 1 1 1 2 7 6 2则所有员工的年薪的平均数比中位数多 万元。14、如图,将的按图摆放在一把刻度尺上,顶点O与尺下沿的端点重合,OA与尺下沿重合,OB与尺上沿的交点B在尺上的读数为2cm,若按相同的方式将的放置在该尺上,则OC与尺上沿的交点C在尺上的读数约为 cm(结果精确到 cm,参考数据:,,)15、如图,在平行四边形ABCD中,AD=10cm,CD=6cm,E为AD上一点,且BE=BC,CE=CD,则DE= cm16、(6分)在平面直角坐标系中,规定把一个三角形先沿x轴翻折,再向右平移两个单位称为一次变换,如图,已知等边三角形ABC的顶点B、C的坐标分别是,(-1,-1),(-3,-1),把三角形ABC经过连续9次这样的变换得到三角形A’B’C’,则点A的对应点A’的坐标是 三、解答题(本大题共11题,共88分)17、(6分)解方程组18、(9分)化简代数式,并判断当x满足不等式组时该代数式的符号。19、(8分)如图,在直角三角形ABC中,,点D在BC的延长线上,且BD=AB,过B作BEAC,与BD的垂线DE交于点E,(1)求证:(2)三角形BDE可由三角形ABC旋转得到,利用尺规作出旋转中心O(保留作图痕迹,不写作法)20、(8分)某中学七年级学生共450人,其中男生250人,女生200人。该校对七年级所有学生进行了一次体育测试,并随即抽取了50名男生和40名女生的测试成绩作为样本进行分析,绘制成如下的统计表:成绩 频数 百分比不及格 9 10%及格 18 20%良好 36 40%优秀 27 30%合计 90 100%(1)请解释“随即抽取了50名男生和40名女生”的合理性;(2)从上表的“频数”、“百分比”两列数据中选择一列,用适当的统计图表示;(3)估计该校七年级学生体育测试成绩不合格的人数。21、(7分)甲、乙、丙、丁4名同学进行一次羽毛球单打比赛,要从中选2名同学打第一场比赛,求下列事件的概率。(1)已确定甲打第一场,再从其余3名同学中随机选取1名,恰好选中乙同学;(2)随机选取2名同学,其中有乙同学.22、(8分)如图,梯形ABCD中,AD//BC,AB=CD,对角线AC、BD交于点O,ACBD,E、F、G、H分别为AB、BC、CD、DA的中点(1)求证:四边形EFGH为正方形;(2)若AD=2,BC=4,求四边形EFGH的面积。23、(7分)看图说故事。请你编一个故事,使故事情境中出现的一对变量x、y满足图示的函数关系式,要求:①指出x和y的含义;②利用图中数据说明这对变量变化过程的实际意义,其中需设计“速度”这个量24、(8分)某玩具由一个圆形区域和一个扇形区域组成,如图,在和扇形中, 与、分别相切于A、B,,E、F事直线与、扇形的两个交点,EF=24cm,设的半径为x cm,① 用含x的代数式表示扇形的半径;② 若和扇形两个区域的制作成本分别为元和元,当的半径为多少时,该玩具成本最小?25、(8分)某汽车销售公司6月份销售某厂家的汽车,在一定范围内,每部汽车的进价与销售有如下关系,若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售一部,所有出售的汽车的进价均降低万元/部。月底厂家根据销售量一次性返利给销售公司,销售量在10部以内,含10部,每部返利万元,销售量在10部以上,每部返利1万元。① 若该公司当月卖出3部汽车,则每部汽车的进价为 万元;② 如果汽车的销售价位28万元/部,该公司计划当月盈利12万元,那么要卖出多少部汽车?(盈利=销售利润+返利)26、(9分)“?”的思考下框中是小明对一道题目的解答以及老师的批阅。我的结果也正确小明发现他解答的结果是正确的,但是老师却在他的解答中划了一条横线,并打开了一个“?”结果为何正确呢?(1)请指出小明解答中存在的问题,并补充缺少的过程:变化一下会怎样……(2)如图,矩形在矩形的内部,,,且,设与、与、与、与之间的距离分别为,要使矩形∽矩形,应满足什么条件?请说明理由。27、(10分)如图,A、B为上的两个定点,P是上的动点(P不与A、B重合),我们称为上关于A、B的滑动角。(1)已知是上关于点A、B的滑动角。① 若AB为的直径,则 ② 若半径为1,AB=,求的度数(2)已知为外一点,以为圆心作一个圆与相交于A、B两点,为 上关于点A、B的滑动角,直线PA、PB分别交于点M、N(点M与点A、点N与点B均不重合),连接AN,试探索与、之间的数量关系。

203 评论(13)

刘阿奔好运来

评分标准没有只有试卷

90 评论(12)

相关问答