• 回答数

    2

  • 浏览数

    296

屠夫糖糖
首页 > 考试培训 > 八年级上册数学期末考试答案

2个回答 默认排序
  • 默认排序
  • 按时间排序

jiajia1994

已采纳

关键的八年级数学期末考试就临近了,只要努力过、奋斗过,就不会后悔。下面是我为大家精心整理的八年级数学上册期末试卷,仅供参考。

一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,第1-8小题选对每小题得3分,第9-12小题选对每小题得4分,选错、不选或选出的答案超过一个均记零分.

1.下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是()

A. B. C. D.

2.下列运算正确的是()

•a2=a5 =2 ÷a3=a2

3. 的平方根是()

B.±2 C. D.±

4.用科学记数法表示﹣为()

A.﹣59×10﹣5 B.﹣×10﹣4 C.﹣×10﹣4 D.﹣590×10﹣7

5.使分式 有意义的x的取值范围是()

≤3 ≥3 ≠3

6.四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()

∥DC,AD∥BC ,AD=BC ,BO=DO ∥DC,AD=BC

7.若 有意义,则 的值是()

A. C.

8.已知a﹣b=1且ab=2,则式子a+b的值是()

B.± C.±3 D.±4

9.如图所示,平行四边形ABCD的周长为4a,AC、BD相交于点O,OE⊥AC交AD于E,则△DCE的周长是()

10.已知xy<0,化简二次根式y 的正确结果为()

A. B. C. D.

11.如图,小将同学将一个直角三角形的纸片折叠,A与B重合,折痕为DE,若已知AC=4,BC=3,∠C=90°,则EC的长为()

A. B. D.

12.若关于x的分式方程 无解,则常数m的值为()

C.﹣1 D.﹣2

二、填空题:本大题共4小题,共16分,只要求填写最后结果,每小题填对得4分.

13.将xy﹣x+y﹣1因式分解,其结果是.

14.腰长为5,一条高为3的等腰三角形的底边长为.

15.若x2﹣4x+4+ =0,则xy的值等于.

16.如图,在四边形ABCD中,AB=20,BC=15,CD=7,AD=24,∠B=90°,则∠A+∠C=度.

三、解答题:本大题共6小题,共64分。解答时要写出必要的文字说明、证明过程或演算步骤。

17.如图所示,写出△ABC各顶点的坐标以及△ABC关于x对称的△A1B1C1的各顶点坐标,并画出△ABC关于y对称的△A2B2C2.

18.先化简,再求值:

(1)5x2﹣(y+x)(x﹣y)﹣(2x﹣y)2,其中x=1,y=2.

(2)( )÷ ,其中a= .

19.列方程,解应用题.

某中学在莒县服装厂订做一批棉学生服,甲车间单独生产3天完成总量的 ,这时天气预报近期要来寒流,需要加快制作速度,这时增加了乙车间,两个车间又共同生产两天,完成了全部订单,如果乙车间单独制作这批棉学生服需要几天?

20.△ABC三边的长分别为a、b、c,且满足a2﹣4a+b2﹣4 c=4b﹣16﹣c2,试判定△ABC的形状,并证明你的结论.

21.如图,四边形ABCD是平行四边形,并且∠BCD=120°,CB=CE,CD=CF.

(1)求证:AE=AF;

(2)求∠EAF的度数.

22.阅读材料:

小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+2 =(1+ )2,善于思考的小明进行了以下探索:

设a+b =(m+n )2(其中a、b、m、n均为整数),则有a+b =m .

a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b 的式子化为平方式的方法.

请你仿照小明的方法探索并解决下列问题:

(1)当a、b、m、n均为正整数时,若a+b =(m+n )2,用含m、n的式子分别表示a,b,得a=,b=.

(2)利用所探索的结论,用完全平方式表示出: =.

(3)请化简: .

一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,第1-8小题选对每小题得3分,第9-12小题选对每小题得4分,选错、不选或选出的答案超过一个均记零分.

1.下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是()

A. B. C. D.

【考点】轴对称图形.

【分析】根据轴对称图形的概念求解.

【解答】解:A、不是轴对称图形,故本选项错误;

B、不是轴对称图形,故本选项错误;

C、不是轴对称图形,故本选项错误;

D、是轴对称图形,故本选项正确.

故选D.

【点评】本题考查了轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.

2.下列运算正确的是()

•a2=a5 =2 ÷a3=a2

【考点】同底数幂的除法;合并同类项;同底数幂的乘法;二次根式的加减法.

【分析】根据合并同类项、同底数幂的乘法、除法,即可解答.

【解答】解:A、a+a=2a,故错误;

B、a3•a2=a5,正确;

C、 ,故错误;

D、a6÷a3=a3,故错误;

故选:B.

【点评】本题考查了合并同类项、同底数幂的乘法、除法,解决本题的关键是熟记合并同类项、同底数幂的乘法、除法.

3. 的平方根是()

B.±2 C. D.±

【考点】算术平方根;平方根.

【专题】常规题型.

【分析】先化简 ,然后再根据平方根的定义求解即可.

【解答】解:∵ =2,

∴ 的平方根是± .

故选D.

【点评】本题考查了平方根的定义以及算术平方根,先把 正确化简是解题的关键,本题比较容易出错.

4.用科学记数法表示﹣为()

A.﹣59×10﹣5 B.﹣×10﹣4 C.﹣×10﹣4 D.﹣590×10﹣7

【考点】科学记数法—表示较小的数.

【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.

【解答】解:﹣﹣×10﹣4,

故选:C.

【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.

5.使分式 有意义的x的取值范围是()

≤3 ≥3 ≠3

【考点】分式有意义的条件.

【分析】分式有意义的条件是分母不等于零,从而得到x﹣3≠0.

【解答】解:∵分式 有意义,

∴x﹣3≠0.

解得:x≠3.

故选:C.

【点评】本题主要考查的是分式有意义的条件,掌握分式有意义时,分式的分母不为零是解题的关键.

6.四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()

∥DC,AD∥BC ,AD=BC ,BO=DO ∥DC,AD=BC

【考点】平行四边形的判定.

【分析】根据平行四边形判定定理进行判断.

【解答】解:A、由“AB∥DC,AD∥BC”可知,四边形ABCD的两组对边互相平行,则该四边形是平行四边形.故本选项不符合题意;

B、由“AB=DC,AD=BC”可知,四边形ABCD的两组对边相等,则该四边形是平行四边形.故本选项不符合题意;

C、由“AO=CO,BO=DO”可知,四边形ABCD的两条对角线互相平分,则该四边形是平行四边形.故本选项不符合题意;

D、由“AB∥DC,AD=BC”可知,四边形ABCD的一组对边平行,另一组对边相等,据此不能判定该四边形是平行四边形.故本选项符合题意;

故选D.

【点评】本题考查了平行四边形的判定.

(1)两组对边分别平行的四边形是平行四边形.

(2)两组对边分别相等的四边形是平行四边形.

(3)一组对边平行且相等的四边形是平行四边形.

(4)两组对角分别相等的四边形是平行四边形.

(5)对角线互相平分的四边形是平行四边形.

7.若 有意义,则 的值是()

A. C.

【考点】二次根式有意义的条件.

【分析】根据二次根式中的被开方数必须是非负数求出x的值,根据算术平方根的概念计算即可.

【解答】解:由题意得,x≥0,﹣x≥0,

∴x=0,

则 =2,

故选:B.

【点评】本题考查的是二次根式有意义的条件以及算术平方根的概念,掌握二次根式中的被开方数必须是非负数是解题的关键.

8.已知a﹣b=1且ab=2,则式子a+b的值是()

B.± C.±3 D.±4

【考点】完全平方公式.

【专题】计算题;整式.

【分析】把a﹣b=1两边平方,利用完全平方公式化简,将ab=2代入求出a2+b2的值,再利用完全平方公式求出所求式子的值即可.

【解答】解:把a﹣b=1两边平方得:(a﹣b)2=a2+b2﹣2ab=1,

将ab=2代入得:a2+b2=5,

∴(a+b)2=a2+b2+2ab=5+4=9,

则a+b=±3,

故选C

【点评】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.

9.如图所示,平行四边形ABCD的周长为4a,AC、BD相交于点O,OE⊥AC交AD于E,则△DCE的周长是()

【考点】平行四边形的性质.

【分析】由▱ABCD的周长为4a,可得AD+CD=2a,OA=OC,又由OE⊥AC,根据线段垂直平分线的性质,可证得AE=CE,继而求得△DCE的周长=AD+CD.

【解答】解:∵▱ABCD的周长为4a,

∴AD+CD=2a,OA=OC,

∵OE⊥AC,

∴AE=CE,

∴△DCE的周长为:CD+DE+CE=CD+DE+AE=CD+AD=2a.

故选:B.

【点评】此题考查了平行四边形的性质以及线段垂直平分线的性质.注意得到△DCE的周长=AD+CD是关键.

10.已知xy<0,化简二次根式y 的正确结果为()

A. B. C. D.

【考点】二次根式的性质与化简.

【分析】先求出x、y的范围,再根据二次根式的性质化简即可.

【解答】解:∵要使 有意义,必须 ≥0,

解得:x≥0,

∵xy<0,

∴y<0,

∴y =y• =﹣ ,

故选A.

【点评】本题考查了二次根式的性质的应用,能正确根据二次根式的性质进行化简是解此题的关键.

11.如图,小将同学将一个直角三角形的纸片折叠,A与B重合,折痕为DE,若已知AC=4,BC=3,∠C=90°,则EC的长为()

A. B. D.

【考点】翻折变换(折叠问题).

【分析】DE是边AB的垂直平分线,则AE=BE,设AE=x,在直角△BCE中利用勾股定理即可列方程求得x的值,进而求得EC的长.

【解答】解:∵DE垂直平分AB,

∴AE=BE,

设AE=x,则BE=x,EC=4﹣x.

在直角△BCE中,BE2=EC2+BC2,则x2=(4﹣x)2+9,

解得:x= ,

则EC=AC﹣AE=4﹣ = .

故选B.

【点评】本题考查了图形的折叠的性质以及勾股定理,正确理解DE是AB的垂直平分线是本题的关键.

12.若关于x的分式方程 无解,则常数m的值为()

C.﹣1 D.﹣2

【考点】分式方程的解;解一元一次方程.

【专题】计算题;转化思想;一次方程(组)及应用;分式方程及应用.

【分析】将分式方程去分母化为整式方程,由分式方程无解得到x=3,代入整式方程可得m的值.

【解答】解:将方程两边都乘以最简公分母(x﹣3),得:1=2(x﹣3)﹣m,

∵当x=3时,原分式方程无解,

∴1=﹣m,即m=﹣1;

故选C.

【点评】本题主要考查分式方程的解,对分式方程无解这一概念的理解是此题关键.

二、填空题:本大题共4小题,共16分,只要求填写最后结果,每小题填对得4分.

13.将xy﹣x+y﹣1因式分解,其结果是(y﹣1)(x+1).

【考点】因式分解-分组分解法.

【分析】首先重新分组,进而利用提取公因式法分解因式得出答案.

【解答】解:xy﹣x+y﹣1

=x(y﹣1)+y﹣1

=(y﹣1)(x+1).

故答案为:(y﹣1)(x+1).

【点评】此题主要考查了分组分解法分解因式,正确分组是解题关键.

14.腰长为5,一条高为3的等腰三角形的底边长为8或 或3 .

【考点】等腰三角形的性质;三角形三边关系.

【分析】根据不同边上的高为3分类讨论,利用勾股定理即可得到本题的答案.

【解答】解:①如图1.

当AB=AC=5,AD=3,

则BD=CD=4,

所以底边长为8;

②如图2.

当AB=AC=5,CD=3时,

则AD=4,

所以BD=1,

则BC= = ,

即此时底边长为 ;

③如图3.

当AB=AC=5,CD=3时,

则AD=4,

所以BD=9,

则BC= =3 ,

即此时底边长为3 .

故答案为:8或 或3 .

【点评】本题考查了等腰三角形的性质,勾股定理,解题的关键是分三种情况分类讨论.

15.若x2﹣4x+4+ =0,则xy的值等于6.

【考点】解二元一次方程组;非负数的性质:偶次方;非负数的性质:算术平方根;配方法的应用.

【专题】计算题;一次方程(组)及应用.

【分析】已知等式变形后,利用非负数的性质列出方程组,求出方程组的解得到x与y的值,即可确定出xy的值.

【解答】解:∵x2﹣4x+4+ =(x﹣2)2+ =0,

∴ ,

解得: ,

则xy=6.

故答案为:6

【点评】此题考查了解二元一次方程组,配方法的应用,以及非负数的性质,熟练掌握运算法则是解本题的关键.

16.如图,在四边形ABCD中,AB=20,BC=15,CD=7,AD=24,∠B=90°,则∠A+∠C=180度.

【考点】勾股定理的逆定理;勾股定理.

【分析】勾股定理的逆定理是判定直角三角形的方法之一.

【解答】解:连接AC,根据勾股定理得AC= =25,

∵AD2+DC2=AC2即72+242=252,

∴根据勾股定理的逆定理,△ADC也是直角三角形,∠D=90°,

故∠A+∠C=∠D+∠B=180°,故填180.

【点评】本题考查了勾股定理和勾股定理的逆定理,两条定理在同一题目考查,是比较好的题目.

三、解答题:本大题共6小题,共64分。解答时要写出必要的文字说明、证明过程或演算步骤。

17.如图所示,写出△ABC各顶点的坐标以及△ABC关于x对称的△A1B1C1的各顶点坐标,并画出△ABC关于y对称的△A2B2C2.

【考点】作图-轴对称变换.

【分析】分别利用关于x轴、y轴对称点的坐标性质得出各对应点的位置,进而得出答案.

【解答】解:△ABC各顶点的坐标以及△ABC关于x轴对称的△A1B1C1的各顶点坐标:

A1(﹣3,﹣2),B1(﹣4,3),C1(﹣1,1),

如图所示:△A2B2C2,即为所求.

【点评】此题主要考查了轴对称变换,得出对应点位置是解题关键.

18.先化简,再求值:

(1)5x2﹣(y+x)(x﹣y)﹣(2x﹣y)2,其中x=1,y=2.

(2)( )÷ ,其中a= .

【考点】分式的化简求值;整式的混合运算—化简求值.

【分析】(1)先根据整式混合运算的法则把原式进行化简,再把x、y的值代入进行计算即可;

(2)先根据分式混合运算的法则把原式进行化简,再把a的值代入进行计算即可.

【解答】解:(1)原式=5x2﹣x2+y2﹣4x2+4xy﹣y2

=4xy,

当x=1,y=2时,原式=4×1×2=8;

(2)原式= •

= •

=a﹣1,

当a= 时,原式= ﹣1.

【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.

19.列方程,解应用题.

某中学在莒县服装厂订做一批棉学生服,甲车间单独生产3天完成总量的 ,这时天气预报近期要来寒流,需要加快制作速度,这时增加了乙车间,两个车间又共同生产两天,完成了全部订单,如果乙车间单独制作这批棉学生服需要几天?

【考点】分式方程的应用.

【分析】设乙车间单独制作这批棉学生服需要x天,则每天能制作总量的 ;甲车间单独生产3天完成总量的 ,则每天能制作总量的 ,根据总的工作量为1列出方程并解答.

【解答】解:设乙车间单独制作这批棉学生服需要x天,则每天能制作总量的 ;甲车间单独生产3天完成总量的 ,则每天能制作总量的 ,

根据题意,得: +2×( + )=1,

解得x=.

经检验,x=是原方程的根.

答:乙车间单独制作这批棉学生服需要天.

【点评】本题考查了分式方程的应用.利用分式方程解应用题时,一般题目中会有两个相等关系,这时要根据题目所要解决的问题,选择其中的一个相等关系作为列方程的依据,而另一个则用来设未知数.

20.△ABC三边的长分别为a、b、c,且满足a2﹣4a+b2﹣4 c=4b﹣16﹣c2,试判定△ABC的形状,并证明你的结论.

【考点】因式分解的应用.

【分析】根据完全平方公式,可得非负数的和为零,可得每个非负数为零,可得a、b、c的值,根据勾股定理逆定理,可得答案.

【解答】解:△ABC是等腰直角三角形.

理由:∵a2﹣4a+b2﹣4 c=4b﹣16﹣c2,

∴(a2﹣4a+4)+(b2﹣4b+4)+(c2﹣4 c+8)=0,

即:(a﹣2)2+(b﹣2)2+(c﹣2 )2=0.

∵(a﹣2)2≥0,(b﹣2)2≥0,(c﹣2 )2≥0,

∴a﹣2=0,b﹣2=0,c﹣2 =0,

∴a=b=2,c=2 ,

∵22+22=(2 )2,

∴a2+b2=c2,

所以△ABC是以c为斜边的等腰直角三角形.

【点评】本题考查了因式分解的应用,勾股定理逆定理,利用了非负数的和为零得出a、b、c的值是解题关键.

21.如图,四边形ABCD是平行四边形,并且∠BCD=120°,CB=CE,CD=CF.

(1)求证:AE=AF;

(2)求∠EAF的度数.

【考点】全等三角形的判定与性质;平行四边形的性质.

【分析】(1)寻找分别含有AE和AF的三角形,通过证明两三角形全等得出AE=AF.

(2)在∠BAD中能找出∠EAF=∠BAD﹣(∠BAE+∠FAD),在(1)中我们证出了三角形全等,将∠FAD换成等角∠AEB即可解决.

【解答】(1)证明:∵四边形ABCD是平行四边形,并且∠BCD=120°,

∴∠BCE=∠DCF=60°,CB=DA,CD=BA,∠ABC=∠ADC,

∵CB=CE,CD=CF,

∴△BEC和△DCF都是等边三角形,

∴CB=CE=BE=DA,CD=CF=DF=BA,

∴∠ABC+∠CBE=∠ADC+∠CDF,

即:∠ABE=∠FDA

在△ABE和△FDA中,AB=DF,∠ABE=∠FDA,BE=DA,

∴△ABE≌△FDA (SAS),

∴AE=AF.

(2)解:∵在△ABE中,∠ABE=∠ABC+∠CBE=60°+60°=120°,

∴∠BAE+∠AEB=60°,

∵∠AEB=∠FAD,

∴∠BAE+∠FAD=60°,

∵∠BAD=∠BCD=120°,

∴∠EAF=∠BAD﹣(∠BAE+∠FAD)=120°﹣60°=60°.

答:∠EAF的度数为60°.

【点评】本题考查全等三角形的判定与性质,解题的关键是寻找合适的全等三角形,通过寻找等量关系证得全等,从而得出结论.

22.阅读材料:

小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+2 =(1+ )2,善于思考的小明进行了以下探索:

设a+b =(m+n )2(其中a、b、m、n均为整数),则有a+b =m .

a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b 的式子化为平方式的方法.

请你仿照小明的方法探索并解决下列问题:

(1)当a、b、m、n均为正整数时,若a+b =(m+n )2,用含m、n的式子分别表示a,b,得a=m2+3n2,b=2mn.

(2)利用所探索的结论,用完全平方式表示出: =(2+ )2.

(3)请化简: .

【考点】二次根式的性质与化简.

【专题】阅读型.

【分析】(1)利用已知直接去括号进而得出a,b的值;

(2)直接利用完全平方公式,变形得出答案;

(3)直接利用完全平方公式,变形化简即可.

【解答】解:(1)∵a+b =(m+n )2,

∴a+b =(m+n )2=m2+3n2+2 mn,

∴a=m2+3n2,b=2mn;

故答案为:m2+3n2;2mn;

(2) =(2+ )2;

故答案为:(2+ )2;

(3)∵12+6 =(3+ )2,

∴ = =3+ .

八年级上册数学期末考试答案

261 评论(10)

五堂宅修

,感觉复习不怎么样的你,也不要浮躁,要知道临阵磨枪,不快也光。诚心祝愿你考场上“亮剑”,为自己,也为家人!祝你八年级数学期末考试成功!下面是我为大家精心推荐的人教版八年级数学上册期末试卷,希望能够对您有所帮助。

一、选择题(本大题共10小题,每小题3分,共30分,每小题只有一个正确答案)

1.下列命题中,假命题是()

的算术平方根是3 B. 的平方根是±2

的立方根是±3 D.立方根等于﹣1的实数是﹣1

2.下列命题中,假命题是()

A.垂直于同一条直线的两直线平行

B.已知直线a、b、c,若a⊥b,a∥c,则b⊥c

C.互补的角是邻补角

D.邻补角是互补的角

3.下列长度的线段中,能构成直角三角形的一组是()

A. , , ,7,8 ,25,27 ,2 ,4

4.下列计算正确的是()

A. B. C.(2﹣ )(2+ )=1 D.

5.点P的坐标为(2﹣a,3a+6),且到两坐标轴的距离相等,则点P的坐标为()

A.(3,3) B.(3,﹣3) C.(6,﹣6) D.(3,3)或(6,﹣6)

6.已知正比例函数y=kx(k≠0)的函数值y随x的增大而增大,则一次函数y=kx+k的图象大致是()

A. B. C. D.

7.方程组 的解为 ,则被遮盖的两个数分别是()

,2 ,1 ,﹣1 D.﹣1,9

8.已知a,b,c三数的平均数是4,且a,b,c,d四个数的平均数是5,则d的值为()

9.如图,∠B=∠C,则∠ADC和∠AEB的大小关系是()

A.∠ADC>∠AEB B.∠ADC=∠AEB

C.∠ADC<∠AEB D.大小关系不能确定

10.如图:有一圆柱,它的高等于8cm,底面直径等于4cm(π=3),在圆柱下底面的A点有一只蚂蚁,它想吃到上底面与A相对的B点处的食物,需要爬行的最短路程大约()

二、填空题(本大题共8小题,每小题3分共24分)

11.在一节综合实践课上,六名同学做手工的数量(单位:件)分别是:5,7,3,6,6,4;则这组数据的中位数为件.

12.若点A(m,5)与点B(2,n)关于原点对称,则3m+2n的值为.

13.有四个实数分别为32, ,﹣23, ,请你计算其中有理数的和与无理数的积的差,其结果为.

14.如图所示的一块地,已知AD=4米,CD=3米,∠ADC=90°,AB=13米,BC=12米,这块地的面积为.

15.等腰直角三角形ABC的直角顶点C在y轴上,AB在x轴上,且A在B的左侧,AC= ,则A点的坐标是.

16.已知 +(x+2y﹣5)2=0,则x+y=.

17.如图,点D在△ABC边BC的延长线上,DE⊥AB于E,交AC于F,∠B=50°,∠CFD=60°,则∠ACB=.

18.已知A地在B地的正南方3km,甲、乙两人同时分别从A、B两地向正北方向匀速行驶,他们与A地的距离s(km)和所行的时间t(h)之间的函数关系如图所示,当他们行进3h时,他们之间的距离为km.

三、(本大题共7小题,19题8分,第20,21,22,23,24小题各6分,25小题8分,共44分)

19.(1)计算:3 + ﹣4

(2)解方程组: .

20.如图,一根旗杆的升旗的绳垂直落地后还剩余1米,若将绳子拉直,则绳端离旗杆底端的距离(BC)有5米.求旗杆的高度.

21.已知:如图,AB∥CD,AD∥BC,∠1=50°,∠2=80°.求∠C的度数.

22.甲、乙两名同学参加学校组织的100米短跑集训,教练把10天的训练结果用折线图进行了记录.

(1)请你用已知的折线图所提供的信息完成下表:

平均数 方差 10天中成绩在

15秒以下的次数

甲 15 5

(2)学校欲从两人中选出一人参加市中学生运动会100米比赛,请你帮助学校作出选择,并简述你的理由.

23.八年级三班在召开期末总结表彰会前,班主任安排班长李小波去商店买奖品,下面是李小波与售货员的对话:

李小波:阿姨,您好!

售货员:同学,你好,想买点什么?

李小波:我只有100元,请帮我安排买10支钢笔和15本笔记本.

售货员:好,每支钢笔比每本笔记本贵2元,退你5元,请清点好,再见.

根据这段对话,你能算出钢笔和笔记本的单价各是多少吗?

24.小颖和小亮上山游玩,小颖乘缆车,小亮步行,两人相约在山顶的缆车终点会合.小亮行走到缆车终点的路程是缆车到山顶的线路长的2倍,小颖在小亮出发后50min才乘上缆车,缆车的平均速度为180m/min.设小亮出发x min后行走的路程为y m.图中的折线表示小亮在整个行走过程中y与x的函数关系.

(1)小亮行走的总路程是m,他途中休息了min;

(2)当50≤x≤80时,求y与x的函数关系式;

(3)小颖乘缆车到达终点所用的时间是多少?当小颖到达缆车终点时,小亮行走的路程是多少?

25.已知△ABC,

(1)如图1,若D点是△ABC内任一点、求证:∠D=∠A+∠ABD+∠ACD.

(2)若D点是△ABC外一点,位置如图2所示.猜想∠D、∠A、∠ABD、∠ACD有怎样的关系?请直接写出所满足的关系式.(不需要证明)

(3)若D点是△ABC外一点,位置如图3所示、猜想∠D、∠A、∠ABD、∠ACD之间有怎样的关系,并证明你的结论.

一、选择题(本大题共10小题,每小题3分,共30分,每小题只有一个正确答案)

1.下列命题中,假命题是()

的算术平方根是3 B. 的平方根是±2

的立方根是±3 D.立方根等于﹣1的实数是﹣1

【考点】立方根;算术平方根;命题与定理.

【分析】分别对每个选项作出判断,找到错误的命题即为假命题.

【解答】解:A、9的算术平方根是3,故A选项是真命题;

B、 =4,4的平方根是±2,故B选项是真命题;

C、27的立方根是3,故C选项是假命题;

D、﹣1的立方根是﹣1,故D选项是真命题,

故选C.

【点评】本题考查了立方根和算术平方根的定义,属于基础题,比较简单.

2.下列命题中,假命题是()

A.垂直于同一条直线的两直线平行

B.已知直线a、b、c,若a⊥b,a∥c,则b⊥c

C.互补的角是邻补角

D.邻补角是互补的角

【考点】命题与定理.

【分析】根据邻补角的性质及常用的知识点对各个命题进行分析,从而得到正确答案.

【解答】解:A、垂直于同一条直线的两直线平行,是真命题,不符合题意;

B、已知直线a、b、c,若a⊥b,a∥c,则b⊥c,是真命题,不符合题意;

C、互补的角不一定是邻补角,是假命题,符合题意;

D、邻补角是互补的角,是真命题,不符合题意.

故选:C.

【点评】此题主要考查了命题与定理,熟练掌握相关定理是解题关键.

3.下列长度的线段中,能构成直角三角形的一组是()

A. , , ,7,8 ,25,27 ,2 ,4

【考点】勾股定理的逆定理.

【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,就是直角三角形,没有这种关系,就不是直角三角形.

【解答】解:A、( )2+( )2≠( )2,故不是直角三角形,此选项错误;

B、62+72≠82,故不是直角三角形,此选项错误;

C、122+252≠272,故不是直角三角形,此选项错误;

D、(2 )2+(2 )2=(4 )2,故是直角三角形,此选项正确.

故选:D.

【点评】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.

4.下列计算正确的是()

A. B. C.(2﹣ )(2+ )=1 D.

【考点】二次根式的加减法;二次根式的性质与化简;二次根式的乘除法.

【分析】根据二次根式的运算法则,逐一计算,再选择.

【解答】解:A、原式=2 ﹣ = ,故正确;

B、原式= = ,故错误;

C、原式=4﹣5=﹣1,故错误;

D、原式= =3 ﹣1,故错误.

故选A.

【点评】根式的加减,注意不是同类项的不能合并.计算二次根式时要注意先化简成最简二次根式再计算.

5.点P的坐标为(2﹣a,3a+6),且到两坐标轴的距离相等,则点P的坐标为()

A.(3,3) B.(3,﹣3) C.(6,﹣6) D.(3,3)或(6,﹣6)

【考点】点的坐标.

【分析】根据点P到两坐标轴的距离相等,可得|2﹣a|=|3a+6|,即可求出a的值,则点P的坐标可求.

【解答】解:∵点P的坐标为(2﹣a,3a+6),且到两坐标轴的距离相等,

∴|2﹣a|=|3a+6|,

∴2﹣a=±(3a+6)

解得a=﹣1或a=﹣4,

即点P的坐标为(3,3)或(6,﹣6).

故选D.

【点评】本题考查了点到两坐标轴的距离相等的特点,即点的横纵坐标的绝对值相等.

6.已知正比例函数y=kx(k≠0)的函数值y随x的增大而增大,则一次函数y=kx+k的图象大致是()

A. B. C. D.

【考点】一次函数的图象;正比例函数的性质.

【分析】先根据正比例函数y=kx的函数值y随x的增大而增大判断出k的符号,再根据一次函数的性质即可得出结论.

【解答】解:∵正比例函数y=kx的函数值y随x的增大而增大,

∴k>0,

∵b=k>0,

∴一次函数y=kx+k的图象经过一、二、三象限.

故选A.

【点评】本题考查的是一次函数的图象与系数的关系,即一次函数y=kx+b(k≠0)中,当k>0,b>0时函数的图象在一、二、三象限.

7.方程组 的解为 ,则被遮盖的两个数分别是()

,2 ,1 ,﹣1 D.﹣1,9

【考点】二元一次方程组的解.

【专题】计算题.

【分析】把x=2代入方程组中第二个方程求出y的值,确定出方程组的解,代入第一个方程求出被遮住的数即可.

【解答】解:把x=2代入x+y=3中,得:y=1,

把x=2,y=1代入得:2x+y=4+1=5,

则被遮住得两个数分别为5,1,

故选B.

【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.

8.已知a,b,c三数的平均数是4,且a,b,c,d四个数的平均数是5,则d的值为()

【考点】算术平均数.

【分析】只要运用求平均数公式: 即可列出关于d的方程,解出d即可.

【解答】解:∵a,b,c三数的平均数是4

∴a+b+c=12

又a+b+c+d=20

故d=8.

故选B.

【点评】本题考查的是样本平均数的求法.熟记公式是解决本题的关键.

9.如图,∠B=∠C,则∠ADC和∠AEB的大小关系是()

A.∠ADC>∠AEB B.∠ADC=∠AEB

C.∠ADC<∠AEB D.大小关系不能确定

【考点】三角形的外角性质.

【分析】利用三角形的内角和为180度计算.

【解答】解:在△ADC中有∠A+∠C+∠ADC=180°,

在△AEB有∠AEB+∠A+∠B=180°,

∵∠B=∠C,

∴等量代换后有∠ADC=∠AEB.

故选B.

【点评】本题利用了三角形内角和为180度.

10.如图:有一圆柱,它的高等于8cm,底面直径等于4cm(π=3),在圆柱下底面的A点有一只蚂蚁,它想吃到上底面与A相对的B点处的食物,需要爬行的最短路程大约()

【考点】平面展开-最短路径问题.

【分析】根据两点之间,线段最短.首先把A和B展开到一个平面内,即展开圆柱的半个侧面,得到一个矩形,然后根据勾股定理,求得蚂蚁爬行的最短路程即展开矩形的对角线的长度.

【解答】解:展开圆柱的半个侧面,得到一个矩形:矩形的长是圆柱底面周长的一半即2π=6,矩形的宽是圆柱的高即8.

根据勾股定理得:蚂蚁爬行的最短路程即展开矩形的对角线长即10.

故选A.

【点评】本题考查了勾股定理的拓展应用.“化曲面为平面”是解决“怎样爬行最近”这类问题的关键.本题注意只需展开圆柱的半个侧面.

二、填空题(本大题共8小题,每小题3分共24分)

11.在一节综合实践课上,六名同学做手工的数量(单位:件)分别是:5,7,3,6,6,4;则这组数据的中位数为件.

【考点】中位数.

【专题】应用题.

【分析】根据中位数的定义解答.把数据按大小排列,第3、4个数的平均数为中位数.

【解答】解:从小到大排列为:3,4,5,6,6,7.

219 评论(9)

相关问答